DOI QR코드

DOI QR Code

Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition

  • Kim Jae-Won (Dept. of Electrical and Electronic Engineering, Yonsei University) ;
  • Kang Hong-Seong (Dept. of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee Sang-Yeol (Dept. of Electrical and Electronic Engineering, Yonsei University)
  • Published : 2006.03.01

Abstract

ZnO thin films were deposited at different repetition rates of 5 Hz and 10 Hz by pulsed laser deposition. X-ray diffraction (XRD) full widths at half maximum (FWHMs) of (002) ZnO peak in ZnO thin film deposited at 5 Hz and 10 Hz was 0.22 and $0.26^{\circ}$, respectively. The grain size of ZnO thin film deposited at 5 Hz was larger than that of 10 Hz. The variation of repetition rates did not have an effect on the optical property of ZnO thin films. The degradation of the crystalline quality and surface morphology in ZnO thin film deposited at 10 Hz resulted from supersaturation effect by decrease of time interval between a ZnO particle arriving on a substrate by laser shot and a ZnO particle arriving on a substrate by next laser shot.

Keywords

References

  1. S. King, J.G.E. Gardeniers, and I.W. Boyd, Appl. Surface Sci. 96-98 (1996) 811
  2. W. W. Wenas, A. Yamada, and K. Takahashi, J. Appl. Phys. 70 (1991) 7119 https://doi.org/10.1063/1.349794
  3. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl, Phys. Lett. 77 (2000) 475 https://doi.org/10.1063/1.127015
  4. S. A. Studenikin, Michael Cocivera, W. Kellner and H. Pascher, Journal of Luminescence 91 (2000) 223 https://doi.org/10.1016/S0022-2313(00)00213-1
  5. A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75 (2003) 2635
  6. Sang Yeol Lee, Eun Sub Shim, Hong Seong Kang, Seong Sik Pang, and Jeong Seok Kang, Thin Solid Films, 473 (2005) 31 https://doi.org/10.1016/j.tsf.2004.06.194
  7. Kyoung Kook Kim, Hyun Sik Kim, Dae Kue Hwang, Jae Hong Lim, and Seong Ju Park, Applied Physics Letters, 83 (2003) 63 https://doi.org/10.1063/1.1591064
  8. Jeong Seok Kang, Hong Seong Kang, Seong Sik Pang, Eun Sub Shim, and Sang Yeol Lee, Thin Solid Films, 443 (2003) 5 https://doi.org/10.1016/S0040-6090(03)00975-1
  9. B.D.Cullity, S.R.Stock, Elements of X-ray Diffraction 3rd Edition, Prentice Hall, 2001, p. 170
  10. Z.K. Tang, Q.K.L. Wong, P. Yu, Appl. Phys. Lett. 72 (1998) 3270 https://doi.org/10.1063/1.121620
  11. B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Materials Science and Engineering B71 (2000) 301
  12. Hong Seong Kang, Jeong Seok Kang, Jae Won Kim, and Sang Yeol Lee, J. Appl. Phys 95 (2004) 1246 https://doi.org/10.1063/1.1633343
  13. Janos H. Fendler and Imre Dekany, Nanoparticles in Solids and Solutions, NATO ASI Series, (1996)
  14. Deuk-Kyu Hwang, Kyu-Hyun Bang, Min-Chang Jeong, and Jae-Min Myoung, J. Cryst. Growth 254 (2003) 449
  15. Sang Hyuck Bae, Sang Yeol Lee, Beom Jun Jin, and Seongil Im, Applied Surface Science 169-170 (2001) 525 https://doi.org/10.1016/S0169-4332(00)00752-2

Cited by

  1. The improved performance of a transparent ZnO thin-film transistor with AlN/Al2O3double gate dielectrics vol.24, pp.5, 2009, https://doi.org/10.1088/0268-1242/24/5/055008
  2. The effects of pulse repetition rate on the structural, optical, and electrical properties of CIGS films grown by pulsed laser deposition vol.351, 2015, https://doi.org/10.1016/j.apsusc.2015.06.002
  3. Characteristics of Nickel-doped Zinc Oxide thin films prepared by sol–gel method vol.202, pp.22-23, 2008, https://doi.org/10.1016/j.surfcoat.2008.06.078
  4. Thermally- or optically-biased memristive switching in two-terminal VO2 devices vol.14, pp.9, 2014, https://doi.org/10.1016/j.cap.2014.06.015
  5. Low temperature short channel polycrystalline silicon thin film transistors with high reliability for flat panel display vol.515, pp.19, 2007, https://doi.org/10.1016/j.tsf.2006.11.130
  6. A zinc-oxide thin-film transistor using a spun-on dielectric and gate electrode vol.42, pp.6, 2009, https://doi.org/10.1088/0022-3727/42/6/065105
  7. $\hbox{VO}_{2}$ Thin-Film Varistor Based on Metal-Insulator Transition vol.31, pp.1, 2010, https://doi.org/10.1109/LED.2009.2034763
  8. Suppression of TFT leakage current effect on active matrix displays by employing a new circular switch vol.52, pp.3, 2008, https://doi.org/10.1016/j.sse.2007.10.031
  9. Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications vol.1, pp.1, 2012, https://doi.org/10.7236/JASC2012.1.1.12
  10. New PMOS LTPS–TFT pixel for AMOLED to suppress the hysteresis effect on OLED current by employing a reset voltage driving vol.52, pp.3, 2008, https://doi.org/10.1016/j.sse.2007.10.030
  11. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates vol.517, pp.14, 2009, https://doi.org/10.1016/j.tsf.2009.01.149
  12. Hydrogenation of nanocrystalline Si thin film transistors employing inductively coupled plasma chemical vapor deposition for flexible electronics vol.515, pp.19, 2007, https://doi.org/10.1016/j.tsf.2006.11.147
  13. Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition vol.11, pp.3, 2015, https://doi.org/10.1007/s13391-015-4419-0
  14. Derivation of GdxZn1-xO Film: The Effects of Gd Concentration on the Structural, Morphological and Optical Properties vol.773-774, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.773-774.686