DOI QR코드

DOI QR Code

Screening of Fibrinolytic Enzymes from Soil Metagenome Library

토양 metagenome library로부터 혈전용해효소의 탐색

  • Lee Sun-Yi (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Kim Bo-Hye (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Kang Ju-Hyung (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Cho Hyo-Jin (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Kong Eun-Hee (Department of Family Medicine, Kosin University Gospel Hospital) ;
  • Moon Sang-Wook (Fermentech Co. Ltd., Technology Innovation Center, Cheju National University) ;
  • Kim Yeong-Jin (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Ahn Soon-Cheol (Department of Microbiology and Immunology, College of Medicine, Pusan National University)
  • 이선이 (부산대학교 의과대학 미생물학 및 면역학 교실) ;
  • 김보혜 (부산대학교 의과대학 미생물학 및 면역학 교실) ;
  • 강주형 (부산대학교 의과대학 미생물학 및 면역학 교실) ;
  • 조효진 (부산대학교 의과대학 미생물학 및 면역학 교실) ;
  • 공은희 (고신대학교병원 가정의학과) ;
  • 문상욱 ((주)퍼멘텍) ;
  • 김영진 (부산대학교 의과대학 미생물학 및 면역학 교실) ;
  • 안순철 (부산대학교 의과대학 미생물학 및 면역학 교실)
  • Published : 2006.04.01

Abstract

Fibrin clots of blood vessels are one of the serious factor caused cardiovascular disease. The development of a antithrombotic and thrombolysis solvent is necessary to prevent and treat these diseases. It has been reported that a strong fibrin-specific fibrinolytic enzyme was produced from a Korean fermented soybean paste similar to Japanese miso. We have been screened the known or novel fibrinolytic enzymes by activity-based and sequence-based screening from soil DNA metagenome library containing all kinds of environmental genomic DNA. The activity-based screening was determined the protease activity on 0.5% skim milk. For sequence-based screening, we designed a set of primer expanding gene sequence of fibrinolytic enzyme, performed PCR and selected clones showing the expected size of amplicons from metagenome library. Transformation of the gene encoding fibrinolytic enzyme was carried out with commercial vectors and their transformants were selected. Finally, we found 15 positive clones from metagenome library. Then each of sequences were analyzed and identified as similar or known the clones of nattokinase. We are going to perform full sequence of each clones, ligate with expression vector, transform into competent cells and then determine activity of expressed enzymes.

Keywords

References

  1. Allsop, A. E. 1998. New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr. Opin. Microbiol. 1(5), 530-534 https://doi.org/10.1016/S1369-5274(98)80085-4
  2. Astrup, T. and S. Millertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  3. Ehrilich, H. J., N. U. Bang, S. P. Little, S. R. Jaskunas, B. J. Weigel, Lo E. Mattler and C. S. Harms. 1987. Biolobical properties of a kringless tissue plasminogen activator mutant. Fibrinolysis 1, 75-77 https://doi.org/10.1016/0268-9499(87)90013-0
  4. Handelsman, J., M. R. Rondon, S. F. Brady, J. Clardy and R. M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5(10), 245-249 https://doi.org/10.1016/S1074-5521(98)90108-9
  5. Hugenholtz, P. and N. R. Pace. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14, 190-197 https://doi.org/10.1016/0167-7799(96)10025-1
  6. Kaeberlein, T., K. Lewis and S. S. Epstein. 2002. Isolating 'Uncultivable' microorganism in pure culture in a simulated natural environment. Science 296, 1127-1129 https://doi.org/10.1126/science.1070633
  7. Lee, H. S., C. K. Yoo, C. S. Lee and S. M. Kang. 2000. Variation of fibrinolytic enzyme activity produced from Bacillus subtilis by gene cloning. Kor. J. App. Microbiol. Biotechnol. 28(1), 14-20
  8. Lee, S. S., S. M. Kim, U. Y. Park, H. Y. Kim and I. S. Shin. 2002. Studies on proteolytic and fibrinolytic activity of Bacillus subtilis JM-3 isolated from anchovy sauce. Korean J. Food Sci..Technol. 34(2), 283-289
  9. MacNeil, I. A., C. L. Tiong, C. Minor, P. R. August, T. H. Grossman, K. A. Loiacono, B. A. Lynch, T. Phillips, S. Narula, R. Sundaramoorthi, A. Tyler, T. Aldredge, H. Long, M. Gilman, D. Holt and M. S. Osburne. 2001. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3(2), 301-308
  10. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from earthworm, Lubricus rubellus. J. Physiol. 41, 461-472
  11. Najajima, N., H. Mihara and H. Sumi. 1993. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Bioact. Biotech. Biochem. 57, 1726-1730 https://doi.org/10.1271/bbb.57.1726
  12. Rondon, M. R., P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor, C. L. Tiong, M. Gilman, M. S. Osburne, J. Clardy, J. Handelsman and R. M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66(6), 2541-2547 https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  13. Sumi, H., M. Maruyama, T. Yoneta and H, Mihara. 1983. Activation of plasma fibrolysis after intrarectal administration of high molecular weight urokinase and its derivative. Acta Haematol. 70, 289-295 https://doi.org/10.1159/000206755
  14. Torsvik, V., J. Goksoyr and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782-787