DOI QR코드

DOI QR Code

Model reaction system에서 가열조건이 acrylamide 및 기타 화합물들의 생성에 미치는 영향

Influence of Heating Conditions on the Formation of Acrylamide and Other Products in Asparagine-Glucose Model Reaction System

  • 이영근 (부산대학교 생명응용과학부)
  • Lee Young-Guen (School of Applied Life Science, Pusan National University)
  • 발행 : 2006.04.01

초록

아크릴아마이드의 형성과정에서 가열조건이 아크릴아마이드의 생성량과 아크릴아마이드 형성에 관여 또는 동반 생성하는 화합물을 조사하기 위하여, 아스파라긴과 포도당의 등량 혼합물을 125, 150, 175 및 $200^{\circ}C$에서 각각 10, 20 및 30 분간 가열하는 모델반응을 이용하였다. 가열한 반응물을 ethyl acetate 및 methanol 2종의 용매로 달리 추출하고 FFAP capillary column과 HP-5MS 5% phenyl methyl siloxane column으로 GC/MS에서 분석한 결과, 아크릴아마이드는 methanol추출물을 FFAP capillary column으로 분석한 결과에서 retention time 23.53분에서 검출되었고 최저검출한계는 4 ng 이었다. 아크릴아마이드 생성량은 $175^{\circ}C$보다. 낮은 125 및 $150^{\circ}C$에서는 온도와 가열시간을 증가시킬수록 점차 증가하여, $175^{\circ}C$에서 10분간 처리하였을 때 최대량인 $116{\mu}g/g$을 생성하였지만 175 및 $200^{\circ}C$에서는 온도 및 가열시간을 증가시킬수록 감소하는 결과를 나타내었다. 아크릴아마이드이외 반응생성물들로서, 1,3-dihydroxypropanone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyrane-4-one 및 5-hydroxymethylfurfural이 다량으로 검출되었으며, 또 다른 화합물인 5-methylfurfural, 2-acetylpyrrole 및 N,N-dimethylcyclohexamine 등은 소량 생성되었음을 확인하였다.

The Formation of acrylamide was studied in Maillard model reaction systems based on asparagine-glucose. The mixture of asparagine and glucose in equal molar ratio, and then heated at 125, 150, 175 and $200^{\circ}C$ for 10, 20 and 30 minute, respectively. The reaction products were extracted with ethyl acetate and methanol, and then isolated and detected on FFAP capillary column and HP-5MS 5% phenyl methyl siloxane column by using GC/MS. Acrylamide was detected only from methanol extracts and on FFAP capillary column, at retention time 23.53 min., and the detection limit was 4.6 ng. Acrylamide content mainly increased with increasing temperature and processing time till $175^{\circ}C$, therefore, maximal acrylamide formation occurred at $175^{\circ}C$ for 10 minute ($116{\mu}g/g$), while, above $175^{\circ}C$, higher temperatures or prolonged processing times caused a decrease of acrylamide levels, finally disappeared at $200^{\circ}C$ for 30 minute. Three major compounds were identified as 1,3-dihydroxypropanone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyrane-4-one and 5-hydroxymethylfurfural, and three minor compounds also as 5-methylfurfural, 2-acetylpyrrole and N,N-dimethylcyclohexamine, from ethyl acetate or methanol extracts on FFAP or HP-5MS capillary column.

키워드

참고문헌

  1. Andrzejewski D., J. A. G. Roach, M. L. Gay and S. M. Musser. 2004. Analysis of coffee for the presence of acrylamide by LC-MS/MS. J. Agric. Food Chem. 52, 1996-2002 https://doi.org/10.1021/jf0349634
  2. Becalski, A., B. P.-Y. Lau, D. Lewis and S. W. Seaman. 2003. Acrylamide in foods: Occurrence, Sources, and Modeling. J. Agric. Food Chem. 51, 802-808 https://doi.org/10.1021/jf020889y
  3. Becalski, A., B. P.-Y. Lau, D. Lewis, S. W. Seaman, S. Hayward, M. Sahagian, M. Ramesh and Y. Leclerc. 2004. Acrylamide in french fries: Influence of free amino acids and sugars. J. Agric. Food Chem. 52, 3801-3806 https://doi.org/10.1021/jf0349376
  4. Friedman, M. 2003. Chemistry, biochemistry, and safety of acrylamide. A Review. J. Agric. Food Chem. 51, 4504-4526 https://doi.org/10.1021/jf030204+
  5. Granvogl, M., M. Jezussek, P. Koehler and P. Schieberle. 2004. Quantitation of 3-aminopropionamide in potatoes-A minor but potent precursor in acrylamide formation. J. Agric. Food Chem. 52, 4751-4757 https://doi.org/10.1021/jf049581s
  6. Kim, C. T., E. S. Hwang and H. J. Lee. 2005. Analysis of acrylamide in processed foods obtained from Korean markets. J. Fd. Hyg. Safety, 20, 191-198
  7. Mottram, D. S., B. L. Wedzicha and A. T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419, 448-449 https://doi.org/10.1038/419448a
  8. Rydberg, P., S. Eriksson, E. Tareke, P. Karlsson, L. Ehrenberg and M. Tornqvist. 2003. Investigations of factors that influence the acrylamide content of heated foodstuffs. J. Agric. Food Chem. 51, 7012-7018 https://doi.org/10.1021/jf034649+
  9. Smith, E. A., S. L. Prues and F. W. Oehme. 1995. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH. Ecotoxicol. Environ. Saf. 35, 121-135 https://doi.org/10.1006/eesa.1996.0091
  10. Smith, E. A., S. L. Prues and F. W. Oehme. 1995. Environmental degradation of polyacrylamides. 2. Effects of artificial environmental(outdoor) exposure. Ecotoxicol. Environ. Saf. 37, 76-91
  11. Stadler, R. H., F. Robert, S. Riediker, N. Varga, T. Davidek, S. Devaud, T. Goldmann, J. Hau and I. Blank. 2004. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem. 52, 5550-5558 https://doi.org/10.1021/jf0495486
  12. Surdyk, N., J. Rosen, R. Andersson and P. Aman. 2004. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 52, 2047-2051 https://doi.org/10.1021/jf034999w
  13. Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson and M. Tornqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50, 4998-5006 https://doi.org/10.1021/jf020302f
  14. Taubert, D., S. Harlfingeri, L. Henkes, R. Berkels and E. Schomig. 2004. Influence of processing parameters on acrylamide formation during frying of potatoes. J. Agric. Food Chem. 52, 2735-2739 https://doi.org/10.1021/jf035417d
  15. Yasuhara, A., Y. Tanaka, M. Hengel and T. Shibamoto. 2003. Gas chromatographic investigation of acrylamide formation in browning model systems. J. Agric. Food Chem. 51, 3999-4003 https://doi.org/10.1021/jf0300947
  16. Yaylayan, V., A. Wnorowski and C. Perez Locas. 2003. Why asparagine needs carbohydrates to generate acrylamide. J. Agric. Food Chem. 51, 1753-1757 https://doi.org/10.1021/jf0261506
  17. Zyzak, D. V., R. A. Sanders, M. Stojanovic, D. H. Tallmadge, B. L. Eberhart, D. K. Ewald, D. C. Gruber, T. R. Morsch, M. A. Strothers, G. P. Rizzi and M. D. Villagran. 2003. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem. 51, 4782-4787 https://doi.org/10.1021/jf034180i