DOI QR코드

DOI QR Code

Effect of FS11052, an Inhibitor of Exocytosis, on Neurite Extension in Rat Hippocampal Neurons and PC12 Cells

신경전달물질 방출 저해제 FS11052가 신경세포와 PC12 세포의 돌기신장에 미치는 영향

  • Lee Yun-Sik (Department of Pharmacology, College of Medicine & Institute of Biomedical Science, Hanyang University) ;
  • Kim Dong-Seob (School of Applied and Life Science, College of Natural Resource and Life Sciences, Pusan Nagtional University)
  • 이윤식 (한양대학교 의과대학 약리학교실) ;
  • 김동섭 (부산대학교 생명자원과학대학 생명응용과학부)
  • Published : 2006.04.01

Abstract

FS11052, a novel microbial metabolite from Streptomyces spp. was identified as a small molecular substance and shown inhibition activities for the release of neurotransmitter from rat hippocampal neuron and PC12 cells. FS11052 is an inhibitor of tritiated norepinephrine ($[^3H]-NE$) release in high $K^+$ buffer solution containing ionomycin, indicating that FS11052 inhibits neurotransmitter release after the influx of $Ca^{2+}$ ions. When examined the effect of FS11052 on glucuronidase release from guinea pig neutrophils, FS11052 inhibited glucuronidase release: when treated with $5{\mu}g/ml$ of FS11052, which was not induced cellular cytotoxicity. The fact that the glucuronidase release in neutrophil and norepinephrine release in neuron was inhibited suggests the similarity in the locations and the mechanisms of FS11052 action targets. When treated with $5{\mu}g/ml$ of FS11052, $[^3H]-NE$ release and neurite extension for both rat hippocampal neurons and PC12 cells were prevented. These observations of FS11052 functioning as an inhibitor of neurotransmitter release suggest that FS11052 has an important role in synaptic transmission in neuron.

신경세포 간 정보교환이 이루어지고 있는 신경전달물질의 방출과정은 극히 복잡하여, 이 방면의 독창적인 연구를 수행하기 위해서는 신규작용을 갖는 특이적인 저분자 probe의 탐색은 필수적이다. PC12세포에 tritium-label된 norepinephrine ($[^3H]-NE$)을 incorporation시킨 후에 60 mM의 고농도의 $K^+$의 자극에 의해서 탈분극 후에 방출되는 $[^3H]-NE$의 양을 scintillation countering하여 생리 활성 물질을 탐색하기 위한 in vitro의 실험계를 세웠다. 이 탐색계를 이용하여 곰팡이, 방선균와 박테리아의 대사산물 1만 1000여 샘플을 탐색한 결과, PC12세포에서 고농도의 $K^+$의 자극에 의해서 탈분극 후에 유도되는 $[^3H]-NE$의 방출을 효과적으로 저해하는 FS11052를 방선균 유래의 대사산물로부터 얻었다. FS11052는 또한 PC12세포와 rat cortical neurons에서 동일한 고농도의 $K^+$의 자극에 의한 탈분극 후에 유도되는 신경전달 물질로서 ATP의 방출에도 유의한 저해효과를 나타냈으며, 이 저해 효과는 ionopore로 알려진 ionomycin ($1{\mu}M$)을 포함하는 저농도의 $K^+$의 버퍼를 처리하였을 때에도 보여졌다. 이틀 결과로부터 FS11052의 신경전달 물질의 방출에 대한 저해작용은 세포내 $Ca^{2+}$ 유입 이 후의 반응으로 추정하며 이 작용기구에 대한 해석을 하기위하여, 신경세포의 돌기신장 형태에 대한 영향을 관찰한 결과, 분화를 유도하는 적정 농도인 $5{\mu}g/ml$의 NGF 존재 하에서의 PC12 세포의 돌기 신장에 대하여서는 억제작용을 나타냈다. 또 rat의 대뇌 해마 세포에 대하여 특정적인 형태의 돌기를 내고 있어, FS11052 물질의 첨가에 의해 통상의 긴 축색돌기는 억제되고 얇은 침상의 돌기가 세포체로부터 돌출되어 있었으며, growth cone 를 갖고 있지 않은 뉴우런이 많이 관찰되었다. FS11052 물질의 작용에 관해서는, 탈분극된 synaptic membrane이 $Ca^{2+}$ 이온을 유입 후 활성화되어 신경전달물질을 방출에 중요한 역할을 하고 있는 synaptotagmin, syntaxin, synapsin, SNAP25 등의 synaptosome을 구성하는 단백질에 직접 혹은 이와 밀접한 관련을 갖고 있는 인자와 간접적으로 작용하며, 신경전달물질의 방출을 억제하여 growth cone의 전향과 신경세포의 가소성을 조절하는 물질로 사료되어, 이 물질이 $Ca^{2+}$ 이온을 유입 후 일어나는 exocytosis와 신경계의 기능연구를 위해 사용되어질 수 있을 것으로 기대된다.

Keywords

References

  1. Alder, J., Z. P. Xie, F. Valtorta, P. Greengard and M. M. Poo. 1992. Antibodies to synaptophysin interfere with transmitter secretion at neuromuscular synapses. Neuron 9, 759-768 https://doi.org/10.1016/0896-6273(92)90038-F
  2. Andres-Mateos E., J. Renart, J. Cruces, L. M. Solis-Garrido, R. Sernates, A. M. de Lucas-Cerrillo, M. Aldea, A. G. Garcia and C. Montiel. 2005. Dynamic association of the $Ca^{2+}$ channel alpha1A subunit and SNAP-25 in round or neurite-emitting chromaffin cells. Eur. J. Neurosci. 22, 2187-2198 https://doi.org/10.1111/j.1460-9568.2005.04385.x
  3. Bean, A. J., R. Seifert, Y. A. Chen, R. Sacks and R. H. Scheler. 1997. Hrs-2 is an ATPase implicated in calcium- regulated secretion. Nature 385, 826-829 https://doi.org/10.1038/385826a0
  4. Bernard V., M. Decossas, I. Liste and B. Bloch. 2006. Intraneuronal trafficking of G-protein-coupled receptors in vivo. Trends Neurosci. (in press)
  5. Ferracci G., R. Miquelis, S. Kozaki, M. Seagar and C. Leveque. 2005. Synaptic vesicle chips to assay botulinum neurotoxins. Biochem. J. 391, 659-666 https://doi.org/10.1042/BJ20050855
  6. Ferreira, A., K. S. Kosik, P. Greengard and H. Q. Han. 1994. Aberrant neurites and synaptic vesicle protein deficiency synapsin II depleted neurons. Science 264, 977-979 https://doi.org/10.1126/science.8178158
  7. Grishin A. A., P. Benquet and U. Gerber. 2005. Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via $Ca^{2+}-dependent$ activation of tyrosine phosphatase. Neuropharmacol. 49, 328-337 https://doi.org/10.1016/j.neuropharm.2005.03.019
  8. Henomatsu, N., T. Yoshimori, A. Yamamoto, Y. Moriyama and Y. Tashiro. 1993. Inhibition of intracellular transportof newly synthesized prolactin by bafilomycin A1 in a pituitary tumor cell line, GH3 cells. Eur. J. Cell Biol. 62, 127-139
  9. Hirling H., P. Steiner, C. Chaperon, R. Marsault, R. Regazzi and S. Catsicas. 2000. Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur. J. Neurosci. 12, 1913-1923 https://doi.org/10.1046/j.1460-9568.2000.00076.x
  10. Itakura M., S. Yamamori, R. Kuwahara, M. Sekiguchi and M. Takahashi. 2005. Two distinct regulatory mechanisms of neurotransmitter release by phosphatidylinositol 3-kinase. J. Neurochem. 94, 502-509 https://doi.org/10.1111/j.1471-4159.2005.03242.x
  11. Klugbauer, N., L. Lacinova, V. Flockerzi and F. Hofmann. 1995. Structure and functional expression of a new member of the tetrodoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO 14, 1084-1090
  12. Li G., Q. Yang, E. A. Alexander and J. H. Schwartz. 2005. Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of $H^+-ATPase$ to apical membrane of renal epithelial cells. Am. J. Physiol. Cell Physiol. 289, 665-672 https://doi.org/10.1152/ajpcell.00041.2005
  13. Li M. X., M. Jia, L. X. Yang, V. Dunlap and P. G. Nelson. 2002. Pre- and postsynaptic mechanisms in Hebbian activity- dependent synapse modification. J. Neurobiol. 52, 241-250 https://doi.org/10.1002/neu.10089
  14. Nicoletta J. A., J. J. Ross, G. Li, Q. Cheng, J. Schwartz, E. A. Alexander and J. H. Schwartz. 2004. Munc-18-2 regulates exocytosis of H(+)-ATPase in rat inner medullary collecting duct cells. Am. J. Physiol. Cell Physiol. 287, 1366-1374 https://doi.org/10.1152/ajpcell.00588.2003
  15. Linden, D.J. 1994. Long-term synaptic depression in the mannalian brain. Neuron 12, 457-472 https://doi.org/10.1016/0896-6273(94)90205-4
  16. Matos M. F., K. Mukherjee, X. Chen, J. Rizo and T. C. Sudhof. 2003. Evidence for SNARE zippering during $Ca^{2+}-triggered$ exocytosis in PC12 cells. Neuropharmacol. 45, 777-786 https://doi.org/10.1016/S0028-3908(03)00318-6
  17. Montecucco C., G. Schiavo and S. Pantano. 2005. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem. Sci. 30, 367-372 https://doi.org/10.1016/j.tibs.2005.05.002
  18. Moriyama, Y. and M. Futai. 1990. $H^+-ATPase$, a Primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem. Biophys. Res. Commun. 173, 443-448 https://doi.org/10.1016/S0006-291X(05)81078-2
  19. Moriyama Y. and M. Futai. 1990. Presence of 5-hydroxytrypamine (serotonin) transport coupled with vacuolar- type $H^+-ATPase$ in neurosecretory granules from bovine posterior pituitary. J. Biol. Chem. 265, 1965-1969
  20. Moriyama Y., M. Maeda and M. Futai. 1992. The role of V-ATPase in neuronal and endocrine system. J. Exp. Biol. 172, 171-178
  21. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  22. Muroi, M., N. Shiragami, K. Nagao, M. Yamasaki and A. Takatsuki. 1993. Folimycin (concanamycin A), a specific inhibitor of V-ATPase, blocks intracellular translocation of the glycoprotein of vesicular stomatitis virus before arrival to the golgi apparatus. Cell Struc. Func. 18, 139-149 https://doi.org/10.1247/csf.18.139
  23. Murrey H. E., C. I. Gama, S. A. Kalovidouris, W. I. Luo, E. M. Driggers, B. Porton and L. C. Hsieh-Wilson. 2006. Protein fucosylation regulates synapsin Ia/Ib expression and neuronal morphology in primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 103, 21-26
  24. O'Conner, V. M., O. Shamotienko, E. Grishin and H. Bet. 1993. On the structure of the 'synapto-secretosome'- Evidence for a rerexin/synaptotagmin/syntaxin/ $Ca^{2+}$ channel complex. FEBS 326, 255-260 https://doi.org/10.1016/0014-5793(93)81802-7
  25. Osen-Sand, A., M. Catsicas, J. K. Staples, K. A. Jones, G. I. Ayala, J. Knowles, G. Grenningloh and S. Catsicas. 1993. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364, 445-448 https://doi.org/10.1038/364445a0
  26. Rosahl, T. W., D. Spillane, M. Missler, J. Herz, D. K. Selig, J. R. Wolff, R. E. Hanner, R. C. Malenka and T. C. Sudhof. 1995. Essential function of synapsins I and II in synaptic vesicle regulation. Nature 375, 488-493 https://doi.org/10.1038/375488a0
  27. Shoji-Kasai Y., M. Itakura, M. Kataoka, S. Yamamori and M. Takahashi. 2002. Protein kinase C-mediated translocation of secretory vesicles to plasma membrane and enhancement of neurotransmitter release from PC12 cells. Eur. J. Neurosci. 15(8), 1390-1394 https://doi.org/10.1046/j.1460-9568.2002.01972.x
  28. Tsujii, E., Y. Tsurumi, S. Miyata, Fujie, A. Kawakami, M. Okamoto and M. Okuhara. 1992. WF 11605, an antagonist of leukotriene B4 produced by a fungus, producing strain, fermentation, isolation and biological activity. J. Antibiotics 45, 698-703 https://doi.org/10.7164/antibiotics.45.698
  29. Tuz K. and H. Pasantes-Morales. 2005. Hyposmolarity evokes norepinephrine efflux from synaptosomes by a depolarization- and $Ca^{2+}-dependent$ exocytotic mechanism. Eur. J. Neurosci. 22, 1636-1642 https://doi.org/10.1111/j.1460-9568.2005.04344.x
  30. Vaynman S. S., Z. Ying, D. Yin and F. Gomez-Pinilla. 2006. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. (in press)
  31. Vitale, M. L., E. P. Steward and J. M. Trifaro. 1995. Chromaffin cell corticalactin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14, 353-363 https://doi.org/10.1016/0896-6273(95)90291-0
  32. Zhao X. Y., Y. Wang, Y. Li, X. Q. Chen, H. H. Yang, J. M. Yue and G. Y. Hu. 2003. Songorine, a diterpenoid alkaloid of the genus Aconitum, is a novel GABA (A) receptor antagonist in rat brain. Neurosci. Lett. 337, 33-36 https://doi.org/10.1016/S0304-3940(02)01299-5
  33. Zhou Q., J. Xiao and Y. Liu. 2000. Participation of syntaxin 1A in membrane trafficking involving neurite elongation and membrane expansion. J. Neurosci. Res. 61, 321-328 https://doi.org/10.1002/1097-4547(20000801)61:3<321::AID-JNR10>3.0.CO;2-L

Cited by

  1. Neuroprotective effects of Sohaphwangwon essential oil in a Parkinson's disease mouse model vol.23, pp.1, 2012, https://doi.org/10.7231/JON.2012.23.1.129