DOI QR코드

DOI QR Code

Relative Biocompatibility Evaluation of Anodized Titanium Specimens in vivo and in vitro

In vivo와 in vitro 에서 양극산화 처리한 타이타늄 시편의 상대적인 생체적합성 평가

  • Lee Yu-Mi (Department of Biology, College of Natural Sciences, Sunchon National University) ;
  • Lee Eun-Jung (Department of Biology, College of Natural Sciences, Sunchon National University) ;
  • Yeom Dong-Sun (Department of Materials Science and Metallurgical Engineering, College of Engineering, Sunchon National University) ;
  • Kim Do-Soon (Department of Biology, College of Natural Sciences, Sunchon National University) ;
  • Yee Sung-Tae (Department of Biology, College of Natural Sciences, Sunchon National University) ;
  • Kim Byung-Il (Department of Materials Science and Metallurgical Engineering, College of Engineering, Sunchon National University) ;
  • Cho Hyun-Wook (Department of Biology, College of Natural Sciences, Sunchon National University)
  • 이유미 (순천대학교 자연과학대학 생명과학) ;
  • 이은정 (순천대학교 자연과학대학 생명과학) ;
  • 염동선 (순천대학교 공과대학 금속공학) ;
  • 김도순 (순천대학교 자연과학대학 생명과학) ;
  • 이성태 (순천대학교 자연과학대학 생명과학) ;
  • 김병일 (순천대학교 공과대학 금속공학) ;
  • 조현욱 (순천대학교 자연과학대학 생명과학)
  • Published : 2006.04.01

Abstract

To evaluate the biocompatibility of untreated and anodized titanium specimens, the specimens were implanted in the subcutaneous tissue of the abdominal region of female mice for two weeks. The reaction of connective tissue to specimens was histologically studied. The implants were encapsulated by fibrous connective. tissue consisting of fibroblast, fibrocyte and other cellss including neutroophil, macrophage and giant multinucleated cell. some newly formed blood vessels were located in the fibrous capsule surrounding the implant. Giant multinucleated cells were observed at the fibrous capsule adjacent to the implant. Kind of cell types and the thickness of fibrous capsules were examined quantitatively. Most of cell types located in the fibrous capsule were fibroblast and fibrocyte. The average thickness of fibrous capsules for the anodized specimens was much thinner than that of the untreated titanium specimen. Biocompatibility of titanium specimens were also studied by using cell culture method. The number of MG-63 cells was significantly increased on the anodized titanium specimens in vitro experiment. Our observations suggest that anodized titanium specimens are more effective for the improvement of biocompatibility in vivo and in vitro.

처리하지 않은 타이타늄과 양극 산화 처리한 타이타늄 시편의 생체적합성을 평가하기 위해, 시편을 마우스의 복부 피하 조직에 이식하고 2주 동안 생존시켰다. 그 시편에 대한 복부 피하 결합조직의 반응을 조직학적으로 조사하였다. 시편 주위를 둘러싸는 섬유성 결합조직 막이 관찰되었으며 이 막은 섬유모세포, 섬유세포 및 기타 세포로서 중성호성백혈구, 대식세포, 거대다핵세포 등으로 이루어져 있었다. 시편을 둘러싸는 이 막에 새로이 형성된 혈관이 존재하기도 하였다. 임플란트와 접하는 섬유성 막에 거대다핵세포가 관찰되었다. 섬유성 막에 있는 세포 종류와 막의 두께를 조사하였다. 막에 있는 대부분의 세포는 섬유모세포와 섬유세포이었다. 양극 산화 처리를 하지 않은 타이타늄 시편에 비해 산화 처리를 한 시편을 둘러싸는 섬유성 막의 평균 두께가 더 얇았다. 또한 타이타늄 시편의 생체적합성을 세포 배양법으로 조사하였다. 산화 처리를 한 시편 위에서 배양한 MG-63 세포의 수가 유의하게 증가되었다. 이런 결과들은 in vivo 와 in vitro 실험에서 산화 처리를 한 타이타늄 시편이 생체적합성을 증가시키는데 효과적이라는 것을 말해준다.

Keywords

References

  1. Batniji, R. K., J. L. Hutchison, R. Dahiya, S. L. Lam and E. F. 3rd. Williams. 2002. Tissue response to expanded polytetrafluoroethylene and silicone implants in a rabbit model. Arch. Facial Plast. Surg. 4, 111-113 https://doi.org/10.1001/archfaci.4.2.111
  2. Butler, K. R., H. A. Benghuzzi and A. Puckett. 2001. Morphometric evaluation tissue-implant reaction associated with ALCAP and TCP bioceramics in vivo. J. Invest. Surg. 14, 139-152 https://doi.org/10.1080/089419301300343291
  3. Dalu, A., B. S. Blaydes, L. G. Lomax and K. B. Delclos. 2000. A comparison of the inflammatory response to a polydimethylsiloxane implant in male and female balb/c mice. Biomaterials 21, 1947-1957 https://doi.org/10.1016/S0142-9612(00)00078-8
  4. Hur, Y. S., J. B. Park, Y. H. Kwon, Y. Herr, H. S. Kim, B. W. Cho and W. I. Cho. 2003. The effect of implant surface treated by anodizing on proliferation of the rat osteoblast. J. Kor. Acad. Periodont. 33, 499-518 https://doi.org/10.5051/jkape.2003.33.3.499
  5. Jacob, J. T., C. F. Burgoyne, S. J. McKinnon, T. M. Tanji, P. K. LaFleur and E. Duzman. 1998. Biocompatibility response to modified Baerveldt glaucoma drains. J. Biomed. Mater. Res. 43, 99-107 https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<99::AID-JBM3>3.0.CO;2-G
  6. Johnson, R., D. Harrison, M. Tucci, A. Tsao, M. Lemos, A. Puckett, J. L. Hughes and H. Benghuzzi. 1997. Fibrous capsule formation in response to ultra high molecular weight polyethylene treated with peptides that influence adhesion. Biomed. Sci. Instrum. 34, 47-52
  7. Kao, W. J., Q. H. Zhao, A. Hiltner and J. M. Anderson. 1994. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane low density polyethylene and polyetherurethanes. J. Biomed. Mater. Res. 28, 73-79 https://doi.org/10.1002/jbm.820280110
  8. Kim, H. K., J. W. Jang and C. H. Lee. 2004. Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J. Mat. Sci.: Mater. Med. 15, 825-830 https://doi.org/10.1023/B:JMSM.0000032824.62866.a1
  9. Kim, K. R., M. H. Lee, B. I. Kim, B. W. Min, M. H. Kim, E. S. Choe and H. W. Cho. 2004. Comparative biocompatibility of metal implants in connective tissue of abdominal wall of the mouse. J. Toxicol. Pub. Health 20, 13-20
  10. Lehle, K., J. Buttstaedt and D. E. Birnbaum. 2003. Expression of adhesion molecules and cytokines in vitro by endothelial cells seeded on various polymer surfaces coated with titaniumcarboxonitride. J. Biomed. Mater. Res. 65A, 393-401 https://doi.org/10.1002/jbm.a.10492
  11. Lehle, K., S. Lohn, G. Reinerth, T. Schubert, J. G. Preuner and D. E. Birnbaum. 2004. Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo. Biomaterials 25, 5457-5466 https://doi.org/10.1016/j.biomaterials.2003.12.055
  12. Li, D. J., K. Ohsaki, P. C. Cui, Q. Ye, K. Baba, Q. C. Wang, S. Tenshin and T. Takano-Yamamoto. 1999. Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats. J. Biomed. Mater. Res. 45, 322-326 https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<322::AID-JBM6>3.0.CO;2-2
  13. Lim, S., S. J. Heo, C. H. Han, T. I. Kim, Y. J. Seol, Y. Ku, K. U. Chung, C. P. Chung, S. B. Han and I. C. Rhyu. 2005. Histological response of anodized titanium implant. J. Kor. Acad. Periodont. 35, 525-536 https://doi.org/10.5051/jkape.2005.35.3.525
  14. McInnes, A. and D. M. Rennick. 1988. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med. 167, 598-611 https://doi.org/10.1084/jem.167.2.598
  15. Mohammadi, S., M. Esposito, M. Cucu, L. E. Ericson and P. Thomsen. 2001. Tissue response to hafnium. J. Mat. Sci.: Mater. Med. 12, 603-611 https://doi.org/10.1023/A:1011237610299
  16. Morehead, J. M. and G. R. Holt. 1994. Soft-tissue response to synthetic biomaterials. Otolaryngol. Clin. North Am., 27, 195-201
  17. Murch, A. R., M. D. Grounds, C. A. Marshall and J. M. Papadimitriou. 1982. Direct evidence that inflammatory multinucleate giant cells form by fusion. J. Pathol. 137, 177-180 https://doi.org/10.1002/path.1711370302
  18. Parker, J. A. T. C., X. F. Walboomers, J. W. Von den Hoff, J. C. Maltha and J. A. Jansen. 2001. Soft tissue response to silicone and poly-L-lactic acid implants with a periodic or random surface micropattern. J. Biomed. Mater. Res. 61, 91-98 https://doi.org/10.1002/jbm.10170
  19. Rodriguez, R., K. Kim and J. L. Ong. 2003. In vitro osteo-blast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J. Biomed. Mater. Res. 65A, 352-358 https://doi.org/10.1002/jbm.a.10490
  20. Ryhanen, J., M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemela, P. Sandvik and W. Serlo. 1998. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res. 41, 481-488 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L
  21. Saldana, L., N. Vilaboa, G. Valles, J. Gonzalez-Cabrero and L. Munuera. 2004. Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. 73A, 97-107 https://doi.org/10.1002/jbm.a.30264
  22. Salthouse, T. N. 1984. Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res. 18, 395-401 https://doi.org/10.1002/jbm.820180407
  23. Schreiber, H., F. Keller, H. P. Kinzl, H. Hunger, W. Knofler, U. Rubling and W. Merten. 1990. The question of the transmissibility of the results of subcutaneous tests of biomaterials from animals to humans. Z. Exp. Chir. Transplant Kunstliche Organe 23, 23-25
  24. Schreiber, H., H. P. Kinzl and J. Thieme. 1990. Computerized microscopic image analysis method in tissue- biomaterials interaction. Biomater. Artif. Cells Organs 18, 637-641 https://doi.org/10.3109/10731199009117332
  25. Son, W. W., X. Zhu, H. I. Shin, J. L. Ong and K. H. Kim. 2003. In vivo histological response to anodized and anodized/ hydrothermally treated titanium implants. J. Biomed. Mater. Res. Part B: Appl. Biomater. 66B, 520-525 https://doi.org/10.1002/jbm.b.10042
  26. Sul, Y. T., C. Johansson, E. Byon and T. Albrektsson. 2005. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26, 6720-6730 https://doi.org/10.1016/j.biomaterials.2005.04.058
  27. Sul, Y. T., C. B. Johansson, Y. Jeong, K. Roser, A. Wennerberg and T. Albrektsson. 2001. Oxidized implants and their influence on the bone response. J. Meter. Sci.: Mater. Med. 12, 1025-1031 https://doi.org/10.1023/A:1012837905910
  28. Sul, Y. T., C. B. Johansson, K. Roser and T. Albrektsson. 2002. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 23, 1809-1817 https://doi.org/10.1016/S0142-9612(01)00307-6
  29. Udipi, K., R. L. Ornberg, K. B. Thurmond II, S. L. Settle, D. Forster and D. Riley. 2000. Modification of inflammotry response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res. 51, 549-560 https://doi.org/10.1002/1097-4636(20000915)51:4<549::AID-JBM2>3.0.CO;2-Z
  30. Walboomers, X. F., H. J. E. Croes, L. A. Ginsel and J. A. Jansen. 1998. Microgrooved subcutaneous implants in the goat. J. Biomed. Mater. Res. 42, 634-641 https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<634::AID-JBM21>3.0.CO;2-O
  31. Williams, S. K., S. S. Berman and L. B. Kleinert. 1997. Differential healing and neovascularization of ePTFE implants in subcutaneous versus adipose tissue. J. Biomed. Mater. Res. 35, 473-481 https://doi.org/10.1002/(SICI)1097-4636(19970615)35:4<473::AID-JBM7>3.0.CO;2-E
  32. Won, D. H., D. H. Kim, Y. S. Lee and T. S. Bae. 2003. Characterization of titanium, niobium and tantalum oxide films by anodic spark discharge technique. Biomater. Res. 7, 163-167
  33. Ye, Q., K. Ohsaki, K. Li, D-J. Li, C-S. Zhu, T. Ogawa, S. Tenshin and T. Takano-Yamamoto. 2001. Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx 28, 131-136 https://doi.org/10.1016/S0385-8146(00)00079-1