DOI QR코드

DOI QR Code

Purification and Characterization of Collagenase Produced by Staphylococcus aureus JJ-11 Isolated from the Human Skin

피부에서 분리한 Staphylococcus aureus JJ-11이 생산하는 collagenase의 정제 및 특성

  • Lee Jin-Kyoung (Division of Biological Sciences, Pusan National University) ;
  • Kim Hae-Nam (Department of Beauty Care, Masan College) ;
  • Kang Ho-Young (Division of Biological Sciences, Pusan National University) ;
  • Jun Hong-Ki (Division of Biological Sciences, Pusan National University)
  • 이진경 (부산대학교 자연과학대학 생명과학부) ;
  • 김해남 (마산대학 뷰티케어과) ;
  • 강호영 (부산대학교 자연과학대학 생명과학부) ;
  • 전홍기 (부산대학교 자연과학대학 생명과학부)
  • Published : 2006.04.01

Abstract

A bacterial strain, identified as Staphylococcus aureus JJ-11, producing collagenase was isolated out of 40 persons having skin troubles. S. aureus JJ-11 produced collagenase optimally in the media containing 1.5%(w/v) gelatin, 1%(w/v) yeast extract, 0.4%(w/v) $K_2HPO_4$, 0.005%(w/v) $NiSO_4{\cdot}6H_2O$ at $37^{\circ}C$ for 18 hrs. The collagenase produced by Staphylococcus aureus JJ-11 was purified at 6.66-folds purity through application of chromatography with Amberlite IRA-900 and Sephacryl S-300 HR columns. The molecular weight of the partially purified enzyme was estimated to be 62 kDa by SDS-PAGE. The protein exhibited optimum enzymatic activity at pH 7.0, and showed a stable activity at pH 4-8. The optimum temperature for collagenase was at $37^{\circ}C$, and activity was maintained upto $40^{\circ}C$. The enzyme activity was slightly elevated in the presence of divalents such as, $Fe^{2+},\;Co^{2+}\;and\;Ba^{2+}$ However, the activity was inhibited in the presence of $Sr^{2+}\;or\;Hg^{2+}$. The inhibition of activity by O-phenanthroline and EDTA suggested that the enzyme may contain metal which is required for activity. The enzyme showed the highest activity when insoluble collagen (type I) was, used as a substrate.

피부 트러블을 가진 남,여 40명의 피부에서 분리한 collagenase를 생산하는 균주를 분리, 동정한 결과 Staphylococcus aureus로 판명되었으며 이를 S. aureus JJ-11이라 명명하였다. S. aurells JJ-11 균주의 collagenase의 최적 생산 조건은 1.5%(w/v) gelatin, 1%(w/v) yeast extract, 0.4% (w/v) $K_2HPO_4$, 0.005%(w/v) $NiSO_4{\cdot}6H_2O$를 함유한 배지 (pH 7.0)에서 $37^{\circ}C$, 200 rpm으로 18시간 동안 배양하는 것이다. 분리 균주가 생산하는 collagenase를 정제하기 위해서 amberlite IRA-900과 sephacryl S-300 HR columns를 이용하였고, 6.66-folds로 정제되었다. S. allreus JJ-11 균주가 생산하는 collagenase를 정제한 결과 분자량은 약 62 kDa이었으며, pH 7.0과 $37^{\circ}C$에서 각각 최대의 활성을 가졌고, pH와 온도에 대한 안정성은 pH 4.0-8.0, $40^{\circ}C$까지 100%의 활성이 있었다. 금속이온에 대해서는 $Fe^{2+},\;Co^{2+},\;Ba^{2+}$ 존재 하에서는 5 mM 농도에서도 활성을 유지하였다. $Sr^{2+},\;Hg^{2+}$에서는 30% 이상이 저해를 받는 것으로 확인되었다. 또한 EDTA와 O-phenanthroline에 의해 65% 이상이 저해되는 일 반적인 collagenase의 특정인 metalloproteinase의 특정을 보였으며, 그리고, 여러 가지 기절에 대해 효소활성을 비교한 결과, insoluble collagen (type I)에 대해 효소 활성이 가장 높았다.

Keywords

References

  1. Asdornnithee, S., K. Akiyama, T. Sasaki and R. Takata. 1994. Isolation and characterization of a collagenolytic enzyme from Bacillus licheniformis N22. J. Ferment. Bioeng. 78(4), 283-287 https://doi.org/10.1016/0922-338X(94)90358-1
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Bryant, M.P., N. R. Krieg, S. P. Lapage, H. Lautrop, J. Liston, R. G. E. Murray, A. W. Ravin and J. T. Staley. 1977. Bergey's Manual of Determinative Bacteriology. Williams & Wilkins. U.S.A
  4. Denis, L. J. and J. Verweij. 1997. Matrix metalloproteinase inhibitors : Present achievements and future prospects. Investigational New Drugs 15, 175-185 https://doi.org/10.1023/A:1005855905442
  5. Doi, E., D. Shibata and T. Matoba. 1981. Modifiec colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118, 173-184 https://doi.org/10.1016/0003-2697(81)90175-5
  6. Endo, A., S. Murakawa, H. Shimizu and Y. Shiraishi. 1987. Purification and properties collagenase from a Streptomyces species. J. Biochem. 102, 163-170 https://doi.org/10.1093/oxfordjournals.jbchem.a122028
  7. Grenier, D., M. A. Houle, P. Plamondon and K. Nakayama. 2003. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. FEMS Microbiol. Lett. 221, 181-185 https://doi.org/10.1016/S0378-1097(03)00178-2
  8. Harrington, D. J. 1996. Bacterial collagenase and collagen- degrading enzymes and their potential role in human disease. Infect. Immun. June 64, 1885-1891
  9. Hisano, T., S. Abe, M. Wakashiro, A. Kimura, and K. Murata. 1989. Isolation and properties of a collagenase with caseinolytic activity from a Pseudomonas sp. J. Ferment. Bioeng. 68(6), 399-403 https://doi.org/10.1016/0922-338X(89)90094-9
  10. Juarez, Z. E. and M. W. Stinson. 1999. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect. Immun. 67(1), 271-278
  11. Laemmli, J. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  12. Lecroisey, A. and B. Keil. 1979. Differences in the degradation of native collagen by two microbial collagenase. Biochem. J. 179, 53-58 https://doi.org/10.1042/bj1790053
  13. Lim, D. V., R. J. Jackson and C. M. Pull-Von Gruenigen. 1993. Purification and assay of bacterial collagenases. J. Microbiol. Methods 18, 241-253 https://doi.org/10.1016/0167-7012(93)90039-K
  14. Lim, K. S., S. H. Son, H. Y. Kang and H. K. Jun. 2005. Purification and characterization of Bacillus subtilis JS-17 collagenase. J. Life Science 15(4), 657-663 https://doi.org/10.5352/JLS.2005.15.4.657
  15. Makinen, K. K. and P. L. Makinen. 1987. Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus(strain soc 67). J. Biol. Chem. 262(26), 12488-12495
  16. Manicourt, D. H. and V. Lefebvre. 1993. An assay for matrix metalloproteinases and proteases acting on proteoglycans, casein or gelatin. Anal. Biochem. 215, 171-179 https://doi.org/10.1006/abio.1993.1572
  17. Miyoshi, S. I., H. Wakae, K. I. Tomochika and S. Shinoda. 1997. Functional domains of a zinc metalloproteinase from Vibrio vulnificus. J. Bacteriol. 179(23), 7606-7609 https://doi.org/10.1128/jb.179.23.7606-7609.1997
  18. Nagano, H. and A. T. Kim. 1999. Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci. Biotechnol. Biochem. 63(7), 181-183
  19. Nakayama, T., N. Tsuruoka, M. Akai and T. Nishino. 2000. Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. strain NTAP-1. J. Biosci. Bioeng. 89(6), 612-614 https://doi.org/10.1016/S1389-1723(00)80067-5
  20. Netzel-Arnett, S., S. K. Mallya, H. Nagase, H. B. Hansen and H. E. Van Wart. 1991. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases. Anal. Biochem. 195, 86-92 https://doi.org/10.1016/0003-2697(91)90299-9
  21. Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophy. 67, 10-15 https://doi.org/10.1016/0003-9861(57)90241-2
  22. Sasagawa, Y., Y. Kamio, Y. Matsubara, Y. matsubara, K. suzuki, H. Kojima and K. Izaki. 1993. Purification and properties of collagenase from Cytophaga sp. L43-1 strain. Biosci. Biotech. Biochem. 57(11), 1894-1898 https://doi.org/10.1271/bbb.57.1894
  23. Sepulveda, P., A. Murgui, J. L. Lopez-ribot, M. Casanova, J. Timoneda and J. P. Martinez. 1995. Evidence for the presence of collagenous domains in Candida albicans cell surface proteins. Infect. Immun. 63(6), 2173-2179
  24. Sorsa, T., T. Ingman, K. Suomalainen, M. Haapasalo, Y. T. Konttinen, O. Lindy, H. Saari and V. J. Uitto. 1992. Identification of protease from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast- type interstitial collagenases. Infect. Immun. 60(11), 4491-4495
  25. Teresa D.C., L. Wang, J. Wille, J. Armiento, and K. Chada. 1998. Epidermal expression of collagenase delays wound-healing in transgenic mice. J. Invest. Dermatol. 111, 1029-1033 https://doi.org/10.1046/j.1523-1747.1998.00457.x
  26. Uitto, V. J., H. Larjava, J. Heino and T. Sorsa. 1989. A protease of Bacteroides gingivalis degrades cell surface and matrix glycoproteins of cultured gingival fibroblasts and induces secretion of collagenase and plasminogen activator. Infect. Inmmun. 57(1), 213-218
  27. Uitto, V. J., K. Suomalainen and T. Sorsa. 1990. Salivary collagenase. Origin, characteristics and relationship to periodontal health. J. Periodont. Res. 25, 135-142 https://doi.org/10.1111/j.1600-0765.1990.tb01035.x
  28. Van, Wart H. E., and D. R. Steinbrink. 1981. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 113, 356-365 https://doi.org/10.1016/0003-2697(81)90089-0
  29. Verheijen, J. H., N. M. E. Nieuwenbroek, B. Beekman, R. Hanemaaijer, H. W. Verspaget, H. K. Ronday and A. H. Bakker. 1997. Modified proenzymes as artificial substrates for proteolytic enzymes: colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase. Biochem. J. 323, 603-609 https://doi.org/10.1042/bj3230603
  30. Zaira, E. J. and M. W. Stinson. 1999. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect. Immun. 67(1), Jan. 271-278