DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Codium fragile (SURINGAR) HARlOT in Korea Using Allozymes

알로자임을 이용한 청각의 유전적 다양성과 집단구조

  • Lee Bok-Kyu (Department of Molecular Biology, Dongeui University) ;
  • Park So-Hye (Department of Molecular Biology, Dongeui University) ;
  • Heo Youn-Seong (Department of Molecular Biology, Dongeui University) ;
  • Ju Mu-Teol (Department of Molecular Biology, Dongeui University) ;
  • Choi Joo-Soo (Department of Molecular Biology, Dongeui University) ;
  • Huh Man-Kyu (Department of Molecular Biology, Dongeui University)
  • 이복규 (동의대학교 자연과학대학 분자생물학과) ;
  • 박소혜 (동의대학교 자연과학대학 분자생물학과) ;
  • 허윤성 (동의대학교 자연과학대학 분자생물학과) ;
  • 주무열 (동의대학교 자연과학대학 분자생물학과) ;
  • 최주수 (동의대학교 자연과학대학 분자생물학과) ;
  • 허만규 (동의대학교 자연과학대학 분자생물학과)
  • Published : 2006.04.01

Abstract

The study of genetic diversity and population structure was carried out in the Codium fragile using allozyme analysis. Although this species has been regarded as a ecologically and economically important source, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of four Korean populations of this species. Of the 15 genetic loci surveyed, nine (60.0%) was polymorphic in at least one population. Genetic diversity was high at the species level ($H_{ES}$=0.144), and, that of the population level was relatively low ($H_{EP}$=0.128). Nearly 87% of the total genetic diversity in C. fragile was apportioned within populations. The predominant asexual reproduction, population fragmentation, low fecundity, geographic isolation and colonization process are proposed as possible factors contributing to low genetic diversity in this species. The indirect estimated of gene flow based on $G_{ST}$ was 1.69. The moderate level of gene flow in C. fragile populations is mainly caused by thallus developed from isolated utricles dispersal via sea current.

알로자임 분석을 이용하여 청각의 유전적 다양성과 집단구조를 분석하였다. 이 종은 한국내 생태적, 경제적 중요한 자원이지만 유전적 분석이 수행되지 않았다. 전분 젤 전기영동으로 이 종의 한국내 네 집단에 대해 알로자임 변이와 유전 구조를 조사하였다. 15개 대립유전자좌위에 대해 9개 좌위(60.0%)가 적어도 한 집단에 대해 다형현상을 나타내었다. 종수준에서 유전적 다양성은 매우 높았다($H_{ES}$=0.144). 집단수준에서 유전적 다양성은 비교적 낮았다($H_{EP}$=0.128). 청각에서 전체 유전적 다양도의 87%는 집단내에 내포되어 있었다. 청각의 번식방법은 유성생식보다는 무성생식이 우세하고, 집단의 단절, 낮은 자손의 생성, 지리적 격리, 그리고 정착과정이 낮은 유전적 다양성을 설명하는 요인으로 사료된다. 조사한 청각 집단에서 세대당 이주하는 개체수는 1.69로 평가되었다. 이 값은 보통 수준의 유전자 흐름으로 해류를 통한 이동이 주된 요인으로 보인다.

Keywords

References

  1. Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29, 1169-1172 https://doi.org/10.1139/f72-172
  2. Edwards, A. L. and R. R. Sharitz. 2000. Population genetics of two rare perennials in isolated wetlands: Sagittaria isoetiformis and S. teris (Alismataceae). Am. J. Bot. 87, 1147-1158 https://doi.org/10.2307/2656651
  3. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5s. Distributed by the author. Department of Genetics, Univ. Washington, Seattle
  4. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme Diversity in Plant Species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Associates, Sunderland, MA
  5. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124 https://doi.org/10.1007/BF00120641
  6. Huh, M. K. and H. W. Huh. 2002. Genetic diversity and population structure of wild and cultivated brown sea mustard, Undaria pinnatifida. Protistology 2, 159-168
  7. Hwang M. S., M. H. Han and I. K. Lee. 1998. Allozyme variation and species relationships in the genus Porphyra (Bangiales, Rhodophyta) from Korea. Algae 13, 447-459
  8. Kang, J. W. 1966. On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll. 7, 1-125
  9. Li, C. C. and D. G. Horvitz, 1953. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5, 107-117
  10. Loveless, M. D. and J. L. Hamrick, 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. System. 15, 65-95 https://doi.org/10.1146/annurev.es.15.110184.000433
  11. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321-3323
  12. Oh, Y. S., Y. P. Lee, and I. K. Lee. 1987. A taxonomic study on the genus Codium, Chlorophyta, in Cheju Island. Korean J. Phycology 2, 61-72
  13. Park, C. S. and C. H. Sohn. 1992. Effects of light and temperature on morphogenesis of Codium fragile (Suringar) Hariot in laboratory culture. Korean J. Phycology 7, 213-223
  14. Saitou, N. and M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  15. Silva, P. C. 1954. The genus Codium in California with observation on the structure of the walls of the utricles. Univ. Calif. Bot. 25, 79-114
  16. Slatkin, M. and N. H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43, 1349-1368 https://doi.org/10.2307/2409452
  17. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  18. Thompson, J. D. 1999. Population differentiation in Mediterranean plants: insight into colonization history and the evolution and conservation of endemic species. Heredity 82, 229-236 https://doi.org/10.1038/sj.hdy.6885040
  19. Wendel, J. F. and N. F. Weeden, 1989. Visualization and Interpretation of Plant Isozymes, pp. 5-45, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Chapman and Hall, London
  20. Workman, P. L. and J. D. Niswander. 1970. Population studies on southern Indian tribes. II. local genetic differentiation in the Papago. Am. J. Hum. Genet. 22, 24-49
  21. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420 https://doi.org/10.2307/2406450