DOI QR코드

DOI QR Code

A Study on the Reactions of Diamines with 2,5-Dimethoxytetrahydrofuran and 1,3-Acetonedicarboxylic Acid

1,3-Acetonedicarboxylic acid와 2,5-dimethoxytetrahydrofuran에 의한 diamine들의 반응에 관한 연구

  • Published : 2006.04.01

Abstract

In order to synthesize novel anticonvulsants, we researched that the reactions of diamines with 2,5-dimethoxytetrahydrofuran and 1,3-acetonedicarboxylic acid. The reaction of ethylenediamine with 2,5-dimethoxytetrahydrofuran and 1,3-acetonedicarboxylic acid afforded 8-(2-pyrrol-1-yl-ethyl)-8-aza-bicyclo[3,2,1]octan-3-one (yield; 5.0%) and 1,2-di-(8-aza-bicyclo[3,2,1]octan3-onyl)ethane (yield; 17.0%). In case of 1,3-diaminopropane, 8-(3-pyrrol-1-yl-propyl)-8-aza-bicyclo[3,2,1]octan-3-one(yield; 6.0%) and 1,3-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)propane (yield; 21.0%) were obtained. In case of 1,8-diaminooctane, 8-(8-pyrrol-1-yl-octyl)-8-aza-bicyclo-[3,2,1]octan-3-one (yield; 2.6 %) and 1,8-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)octane (yield; 24.9%) were obtained. In diaminobenzene reactions, synthetic yields of 8-aza-bicyclo-[3,2,1]octan-3-one derivatives were higher than those of pyrrole derivatives because re actions were done under room temperature. The longer the carbon chain of diaminoalkane is, the more reactive N atom is due to more electron donating effect, and the less steric hindrance around the carbon gave the higher chemical yields. The reaction of p-phenylenediamine as a diaminobenzene with 2,5-dimethoxyte-trahydrofuran and 1,3-acetonedicarboxylic acid produced p-dipyrrolylbenzene (yield; 4.0%), 8-(4-pyrrol-1-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one (yield; 12.0%), and 1,4-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)benzene (yield; 59.0%). In case of m-phenylenediamine, 8-(3-pyrrol-1-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one(yield; 2.0%) and 1,3-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)benzene (yield ; 28.0%) were obtained. But, synthesis of 1,2-di-(8-aza-bicyclo[3,2,l]octan-3-onyl)benzene by treatment of o-phenylenediamine was not successful, presumably due to the steric hindrance of 8-aza-bicyclo-[3,2,1]octan-3-one rings.

본 연구를 통해 항 경련 활성을 보이는 8-aza-bicyclo[3,2,1]octan-3-one 구조를 모체로 하여 생리활성 및 구조적 특이성을 가진 8-aza-bicyclo[3,2,1]octan-3-one 화합물을 합성하고자 하였다. 본 논문에서는 ethylenediamine 1을 2,5-dimethoxyte-trahydrofuran과 1,3-acetonedicarboxylic acid을 반응시켜 8-(2-pyrrol-1-yl-ethyl)-8-aza-bicyclo[3,2,1]octan-3-one 2(yield ; 5.0%)와 1,2-di-8-aza-bicyclo[3,2,1]octan-3-onyl)ethane 3(yield ; 17.0%)을 합성하였다. 1,3diaminopropane 4의 경우에는, 8-(3-pyrrol-1-yl-propyl)-8-aza-bicyclo[3,2,1]octan-3-one 5(yield ; 6.0%)와 1,3-di-8-aza-bicyclo[3,2,1]octan-3-onyl)propane 6 (yield; 21.0%)을, 그리고 1,8-diaminooctane 7의 경우에는 8-(-8-pyrrol-1-yl-octyl)-8-aza-bicyclo[3,2,1]octan-3-one 8(yield; 2.6%)과 1,8-di-8-aza-bicyclo[3,2,1]octan-3-onyl)octane 9(yield; 24.9%)를 합성할 수 있었다. Diaminoalkanes(1,.4, 7)의 반응에서 보면 실온에서 반응을 진행시켰기에 pyrrole 유도체보다는 8-aza-bicyclo[3,2,1]octan-3-one 유도체의 합성이 보다 유리한 결과를 나타냈다. 그리고 탄소 chain이 길수록 N 원자에 전자를 잘 밀어주어 활성이 더 좋았으며 탄소 steric effect도 작기 때문에 생성물의 yield가 더 높았다. Diaminobenzene(10, 14) 역시 diaminoalkane의 반응과 같이 p-phenylenediamine 10을 2,5-dimethoxytetrahydrofuran, 그리고 1,3-acetonedicarboxylic acid과 반응시켜 p-dipyrrolylbenzene 11(yield; 4.0%), 8-(4-pyrrol-1-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one 12(yield; 12.0%), 1,4-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)-benzene 13(yield; 59.0%)을 합성하였고, m-phynylenediamine 14의 경우에도 8-(3-pyrrol-l-yl-phenyl)-8-aza-bicyclo[3,2,1]octan-3-one 15(yield; 2.0%)와 1,3-di-(8-aza-bicyclo[3,2,1]octan-3-onyl)-benzene 16(yield; 28.0%)을 합성할 수 있었다. 그러나 o-phynylenediamine 17의 경우에는 8-aza-bicyclo[3,2,1]octan-3-one ring들의 steric hindrance의 영향에 의해 1,3-di-8-aza-bicyclo[3,2,1]octan-3-onyl)benzene은 합성되지 않았다.

Keywords

References

  1. Dipaloma, J. R. 1971. Drill's Phamacology in Medicine. pp. 208 and pp. 608, 4th eds., McGraw-Hill, Academic press, New York
  2. Galvez, E., M. Martinez, J. Gonzalez, G. G. Trigo, P. Smith-Verdier, F. Florencio and S. Garcia-Blanco. 1983. J. Pharm. Sic. 72, 881 https://doi.org/10.1002/jps.2600720811
  3. Gordon, A. J. and R. A. Ford. 1972. The Chemistry Companion. John wily and sons (eds.), Academic press, New York
  4. Hanisch, P., A. J. Jones, A. F. Casey and J. E. Coates. 1977. J. Chem. Soc. Perkin II, 2, 1202
  5. Holmes, H. L. 1950. The Alkaloids; Monske, R. H. F. (eds.), Vol.I, Charter 6, Academic Press, New York
  6. Izquierdo, M. L., E. Galvez, C. Burgos and F. Florencio, 1988. J. Heterocyclic Chem. 25, 419 https://doi.org/10.1002/jhet.5570250213
  7. Keagle, L. C. and W. H. Haryung, 1946. Tropanone and its Homologs. J. Am. Chem. Soc. 68, 1608 https://doi.org/10.1021/ja01212a072
  8. Schopf, C. and G. Lehmann, 1935. Ann. 518, 1
  9. Lette, E. 1980. Biosynthesis of cocaine and cuscohygrine in Erythroxylon coca. J. Chem. Soc. Chem. Commun, 23, 1170
  10. Leuchs, H. and Geserick, A. 1908. Ber. 41, 4171 https://doi.org/10.1002/cber.190804103127
  11. Leuchs, H. and Simion, F. 1911. Ber. 44, 1874 https://doi.org/10.1002/cber.19110440295
  12. Perrin, D. O., W. L. F. Armarego and D. R. Perrin. 1966. Purification of Laboratory Chemicals Pergamon Press, London
  13. Preobrashenski, N. A., M. N. Schtschukina and R. A. Lapina. 1936. Ber. 69, 1615 https://doi.org/10.1002/cber.19360690712
  14. Riddick, J. A. and W. B. Bunger. 1970. Organic Solvents, 3rd eds., wily Interscience, New York
  15. Supple, J. H. and E. Eklum. 1971. Stereochemistry of Quaternization of Tropidines. J. Am. Chem. Soc. 93, 6684 https://doi.org/10.1021/ja00753a064
  16. Trigo, G. G. and M. Martinez, 1974. Pharm. Mediterr. 10, 643
  17. Trigo, G. G., M. Martinez and E. Galvez, 1981. J. Pharm. Sic. 70, 87 https://doi.org/10.1002/jps.2600700118
  18. Vigmond, S. J., M. C. Chang, K. M. R. Kallury and M. Thompson. 1994. Direct synthesis of aryldipyrromethanes. Tetrahedron Lett. 35(16), 2455 https://doi.org/10.1016/S0040-4039(00)77142-5
  19. Wiger, G. R. and M. F. Rettig, 1976. Reactions of Palladium(II) Chloride with Aziridine Rings. Catalytic Rearrangement of N-Carbethoxy-8-azabicyclo[5.1.0]oct-3- ene to N-Carbethoxynortro-pidine J. Am. Chem. Soc. 98, 4168 https://doi.org/10.1021/ja00430a027
  20. Willstätter, R. 1901. Ber. 34, 3163 https://doi.org/10.1002/cber.190103402289