Effects of Naphthalene Trisulfonic Acid on the Surface Properties of Electrodeposited Ni Layer

Naphthalene Trisulfonic Acid가 니켈 전착층의 표면 특성에 미치는 영향

  • Lee Joo-Yul (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kim Man (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kwon Sik-Chol (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kim Jung-Hwan (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kim In-gon (Department of Materials and Metallurgical Engineering, Dong-eui University)
  • 이주열 (한국기계연구원 표면기술연구센터) ;
  • 김만 (한국기계연구원 표면기술연구센터) ;
  • 권식철 (한국기계연구원 표면기술연구센터) ;
  • 김정환 (한국기계연구원 표면기술연구센터) ;
  • 김인곤 (동의대학교 재료금속공학과)
  • Published : 2006.02.01

Abstract

The effects of an organic additive, naphthalene trisulfonic acid (NTSA), contained in the nickel sulfamate bath on the surface properties of the electrodeposited nickel layer were investigated through electrochemical technique, x-ray diffraction analysis, and microscopic observation. The addition of NTSA facilitated the oxidation process of electrodeposited nickel layer during anodic scan and also increased the hardness and internal stress of the nickel film as the applied current density became higher. It seems that NTSA modulated the deposit structure during electrodeposition and so induced higher distribution of (110) orientation with respect to (200). With the increase of the NTSA in the bath, nickel layer was formed in small grain size, which resulted in enhanced surface evenness and brightness.

Keywords

References

  1. T. Hart, A. Watson, Metal Finishing, 98 (2001) 388 https://doi.org/10.1016/S0026-0576(00)80348-7
  2. P. K.D. V. Yarlagadda, P. Christodoulou, V. Subramanian, J. Mater. Process. Tech., 89-90 (1999) 231 https://doi.org/10.1016/S0924-0136(99)00072-2
  3. H. Yang, S.-W. Kang, International Journal of Machine Tools & Manufacture, 40 (2000) 1065
  4. T. Kagotani, R. Kobayashi, S. Sugimoto, K. Inomata, K. Okayama, J. Akedo, J. Magnetism & Magnetic Mater., 290 (2005) 1442 https://doi.org/10.1016/j.jmmm.2004.11.543
  5. W. M. Kim, D. Y. Ku, I. K. Lee, Y. W. Seo, B. K. Cheong, T. S. Lee, I.H. Kim, K. S. Lee, Thin Solid Films, 473 (2005) 315 https://doi.org/10.1016/j.tsf.2004.08.083
  6. Y. K. Hong, C. Y. Lee, C. K. Jeong, J. H. Sim, K. Kim, J. Joo, M. S. Kim, J. Y. Lee, S. H. Jeong, S. W. Byun, Curr. Appl. Phys., 1 (2001) 439 https://doi.org/10.1016/S1567-1739(01)00054-2
  7. T. Takei, Electrochim. Acta, 23 (1978) 1325 https://doi.org/10.1016/0013-4686(78)80012-7
  8. I. Kim, K. Kang, J. Lee, S. C. Kwon, M. Kim, J. Y. Lee, J. Kor, Inst. Surf. Eng., 38 (2005) 14
  9. J.-Y. Lee, J.-W. Kim, B.-Y. Chang, H.-T. Kim, S.-M. Park, J. Electrochem. Soc., 151 (2004) C333