Ring Oxpening Polymerization of D,L-Lactide on Magnetite Nanoparticles

  • Tian Jing (School of Chemical Engineering and Technology, TianJin University) ;
  • Feng Ya-Kai (School of Chemical Engineering and Technology, TianJin University) ;
  • Xu Yong-Shen (School of Chemical Engineering and Technology, TianJin University)
  • 발행 : 2006.04.01

초록

The ring-opening polymerization of D,L-lactide initiated by tin(II) 2-ethylhexanoate $(Sn(Oct)_2)$ on the surface-initiated magnetite $(Fe_{3}O_4)$ nanoparticles was performed at $130^{\circ}C$. The effects of the polymer molar mass and concentration on the amount of surface polymer were investigated. The number average molecular weights, $M_n$, obtained by both NMR and GPC methods fit well within the accuracy of the applied methods and ranged from 1,100 to $4,040g\;mol^{-1}$. A surface functionalization density of up to 625 initiation sites per particle was obtained. The composition of various core-shell particles was determined by TGA, with results indicating magnetite $(Fe_{3}O_4)$ contents, ${\mu}m$, between 17 and 59 wt%. Under the influence of a magnetic field, the heating generated by superparamagnetic core-shell particles suspended in toluene presented guidelines for an optimization of magnetic particle systems with respect to an application for hyperthermia.

키워드

참고문헌

  1. J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys., 98, 283 (1997) https://doi.org/10.1002/9780470141571.ch4
  2. W. F. Brown Jr., Phys. Rev., 130, 1677 (1963) https://doi.org/10.1103/PhysRev.130.1677
  3. U. Schwertmann and R. M. Cornell, Iron oxides in the laboratory: preparation and characterization, Weinheim, Cambridge, VCH, 1991
  4. Y. X. Wang, S. M. Hussain, and G. P. Krestin, European radiology, 11, 2319 (2001) https://doi.org/10.1007/s003300100908
  5. M. Babincova, P. Cicmanec, P. Babinec, and V. Altanerova, et al., Z Naturforsch (Sect C), 56, 909 (2001)
  6. B. M. Berkovsky and V. Bashtovoy, Magnetic fluids and applications handbook, Begell House, Inc., New York, Wallingford, UK, 1996
  7. J. P. Dailey, J. P. Phillipsb, C. Lib, and J. S. Riffleb, J. Magn. Magn. Mater., 194, 140 (1999) https://doi.org/10.1016/S0304-8853(98)00562-9
  8. L. Babes, B. Denizot, G. Tanguy, and J. Le Jeune, et al., J. Colloid Int. Sci., 212, 474 (1999) https://doi.org/10.1006/jcis.1998.6053
  9. B. Bonnemain, J. Drug Target, 6, 167 (1998) https://doi.org/10.3109/10611869808997890
  10. N. Ramachandran and K. Mazuruk, Ann. NY Acad. Sci., 1027, 99 (2004) https://doi.org/10.1196/annals.1324.010
  11. G. Carrot, S. M. Scholz, C. J. G. Plummer, and J. G. Hilborn, Chem. Mater., 11, 3571 (1999) https://doi.org/10.1021/cm990362+
  12. Y. Zhang, N. Kohler, and M. Q. Zhang, Biomaterials, 23, 1553 (2002) https://doi.org/10.1016/S0142-9612(01)00267-8
  13. M. D. Butterworth, L. Illum, and S. S. Davis, Colloid Surface A, 179, 93 (2001) https://doi.org/10.1016/S0927-7757(00)00633-6
  14. J. Lahann and R. Langer, Macromol. Rapid Comm., 22, 968 (2001) https://doi.org/10.1002/1521-3927(20010801)22:12<968::AID-MARC968>3.0.CO;2-R
  15. I. S. Choi and R. Langer. Macromolecules, 34, 5361 (2001) https://doi.org/10.1021/ma010148i
  16. M. Joubert, C. Delaite, E. Bourgeat-Lami, and P Dumas, J. Polym. Sci.; Part A: Polym. Chem., 42, 1976 (2004) https://doi.org/10.1002/pola.20035
  17. K. R. Yoon, Y. J. Koh, and I. S. Choi, Macromol. Rapid Comm., 24, 207 (2003) https://doi.org/10.1002/marc.200390025
  18. P. Dubois, M. Krishnanb, and R. Narayanb, Polymer, 40, 3091 (1999) https://doi.org/10.1016/S0032-3861(98)00110-4
  19. M. Moller, F. Nederberg, L. S. Lim, and R Kange, et al., J. Polym. Sci.; Part A: Polym. Chem., 39, 3529 (2001) https://doi.org/10.1002/pola.10003
  20. G. Carrot, D. Rutot-Houze, A. Pottier, and P Degee, et al., Macromolecules, 35, 8400 (2002) https://doi.org/10.1021/ma020558m
  21. R. Massart, IEEE T. Magn., 17, 1247 (1981) https://doi.org/10.1109/TMAG.1981.1061188
  22. K. Ishihara, M. Kubota, and H. Yamamoto, Synlett, 3, 265 (1996)
  23. M. Moller, R. Kange, and J. L. Hedrick, J. Polym. Sci.; Part A: Polym. Chem., 38, 2067 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11<2067::AID-POLA150>3.0.CO;2-1
  24. H. Schenk, M. Svensson, and A. C. Albertsson, Macromolecules, 34, 3877 (2001) https://doi.org/10.1021/ma002096n
  25. S. H. Kim, Y. K. Han, Y. H. Kim, and S. I. Hong, Die Makromolekulare Chemie, 193, 1623 (2003) https://doi.org/10.1002/macp.1992.021930706
  26. K. R. Yoon, Y. W. Lee, J. K. Lee, and I. S. Choi, Macromol. Rapid Comm., 25, 1510 (2004) https://doi.org/10.1002/marc.200400182
  27. M. E. Fleet, Acta Crystallogr. B, 37, 917 (1981) https://doi.org/10.1107/S0567740881004597