Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization

  • Yoon Kuk-Ro (Department of Chemistry, Hannam University) ;
  • Yoon Ok-Ja (Department of Physics, Chung-Ang University) ;
  • Chi Young-Shik (Department of Chemistry, KAIST) ;
  • Choi Insung-S. (Department of Chemistry, KAIST)
  • Published : 2006.04.01

Abstract

A polymeric film of a biodegradable poly(1,5-dioxepan-2-one) (PDXO) was formed on a gold surface by a combination of the formation of self-assembled monolayers (SAMs) presenting hydroxyl groups and the surface-initiated, ring-opening polymerization (SI-ROP) of 1,5-dioxepan-2-one (DXO). The SI-ROP of DXO was achieved by heating a mixture of $Sn(Oct)_2$, DXO, and the SAM-coated substrate in anhydrous toluene at $55^{\circ}C$. The resulting PDXO film was quite uniform. The PDXO film was characterized by polarized infrared external reflectance spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, ellipsometry, and contact angle goniometry.

Keywords

References

  1. N. Nath and A. Chilkoti, Adv. Mater., 14, 1243 (2002) https://doi.org/10.1002/1521-4095(20020903)14:17<1243::AID-ADMA1243>3.0.CO;2-M
  2. J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, Angew. Chem. Int. Ed., 40, 3166 (2001) https://doi.org/10.1002/1521-3773(20010903)40:17<3166::AID-ANIE3166>3.0.CO;2-#
  3. B. D. Klugherz, P. L. Jones, X. Cui, W. Chen, N. F. Meneveau, S. DeFelice, J. Connolly, R. L. Wilensky, and R. J. Levy, Nat. Biotechnol., 18, 1181 (2000) https://doi.org/10.1038/81176
  4. F. E. Black, M. Hartshorne, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, K. M. Shakesheff, S. M. Cannizzaro, I. Kim, and R. Langer, Langmuir, 15, 3157 (1999) https://doi.org/10.1021/la9803575
  5. S. Edmondson, V. L. Osborne, and W. T. S. Huck, Chem. Soc. Rev., 33, 14 (2004) https://doi.org/10.1039/b210143m
  6. Y. S. Chi, J. K. Lee, K.-B. Lee, D. J. Kim, and I. S. Choi, Bull. Korean Chem. Soc., 26, 361 (2005) https://doi.org/10.5012/bkcs.2005.26.3.361
  7. Y.-W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, S.- P. Hong, B.-C. Yu, H.-J. Paik, W. S. Yun, and I. S. Choi, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  8. I. S. Choi and R. Langer, Macromolecules, 34, 5361 (2001) https://doi.org/10.1021/ma010148i
  9. M. Husemann, D. Mecerreyes, C. J. Hawker, J. L. Hedrick, R. Shah, and N. L. Abbott, Angew. Chem. Int. Ed., 38, 647 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<647::AID-ANIE647>3.0.CO;2-0
  10. M. Möller, F. Nederberg, L. S. Lim, R. Kånge, C. J. Hawker, J. L. Hedrick, Y. D. Gu, R. Shah, and N. L. Abbott, J. Polym. Sci., Part A: Polym. Chem., 39, 3529 (2001) https://doi.org/10.1002/pola.10003
  11. K. R. Yoon, Y. S. Chi, K.-B. Lee, J. K. Lee, D. J. Kim, Y.-J. Koh, S.-W. Joo, W. S. Yun, and I. S. Choi, J. Mater. Chem., 13, 2910 (2003) https://doi.org/10.1039/b305903k
  12. K. R. Yoon, Y.-J. Koh, and I. S. Choi, Macromol. Rapid Commun., 24, 207 (2003) https://doi.org/10.1002/marc.200390025
  13. K. R. Yoon, W.-J. Kim, and I. S. Choi, Macromol. Chem. Phys., 205, 1218 (2004) https://doi.org/10.1002/macp.200400077
  14. K. R. Yoon, K.-B. Lee, Y. S. Chi, W. S. Yun, S.-W. Joo, and I. S. Choi, Adv. Mater., 15, 2063 (2003) https://doi.org/10.1002/adma.200305562
  15. K. R. Yoon, Y.-W. Lee, J. K. Lee, and I. S. Choi, Macromol. Rapid Commun., 25, 1510 (2004) https://doi.org/10.1002/marc.200400182
  16. T. Mathisen, K. Masus, and A.-C. Albertsson, Macromolecules, 22, 3842 (1989) https://doi.org/10.1021/ma00200a004
  17. A. Kafrawy and S. W. Shalaby, J. Bioact. Compat. Polym., 1, 431 (1986) https://doi.org/10.1177/088391158600100401
  18. R. Arentzen, Y. T. Yan Kui, and C. B. Reese, Synthesis, 509 (1975)
  19. C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc., 113, 12 (1991) https://doi.org/10.1021/ja00001a002
  20. J.-B. Kim, M. L. Bruening, and G. L. Baker, J. Am. Chem. Soc., 122, 7616 (2000) https://doi.org/10.1021/ja001652q
  21. R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, and J. L. Hedrick, Macromolecules, 33, 597 (2000) https://doi.org/10.1021/ma991264c
  22. C. D. Bain, E. B. Troughton, Y. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc., 111, 321 (1989) https://doi.org/10.1021/ja00183a049
  23. K. R. Yoon, Y. Kim, and I. S. Choi, J. Polym. Res., 11, 265 (2004) https://doi.org/10.1007/s10965-005-2409-x
  24. K. A. M. Thakur, R. T. Kean, J. M. Zupfer, N. U. Buehler, M. A. Doscotch, and E. J. Munson, Macromolecules, 29, 8844 (1996) https://doi.org/10.1021/ma960828z
  25. H. R. Kricheldorf and D.-O. Damrau, Macromol. Chem. Phys., 199, 1089 (1998) and references therein https://doi.org/10.1002/(SICI)1521-3935(19980601)199:6<1089::AID-MACP1089>3.0.CO;2-S