FT-Raman Studies on Ionic Interactions in ${\pi}$-Complexes of Poly(hexamethylenevinylene) with Silver Salts

  • Kim Jong-Hak (Department of Chemical Engineering, Yonsei University) ;
  • Min Byoung-Ryul (Department of Chemical Engineering, Yonsei University) ;
  • Won Jong-Ok (Department of Applied Chemistry, Sejong University) ;
  • Kang Yong-Soo (Division of Chemical Engineering, Hanyang University)
  • 발행 : 2006.04.01

초록

Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through ${\pi}$-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the ${\pi}$-complex formation of $AgBF_4,\;AgClO_4\;and\;AgCF_{3}SO_3$ with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counter-anions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]:[Ag]=1:1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order $AgBF_4$ > $AgClO_4$ > $AgCF_{3}SO_3$, but became similar at [C=C]:[Ag]=1:1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.

키워드

참고문헌

  1. Y. Kang. Y. H. Seo, D. W. Kim, and C. Lee, Macromol. Res., 12, 431 (2004) https://doi.org/10.1007/BF03218423
  2. H. R. Allcock, W. R. Laredo, and R. V. Morford, Solid State Ionics, 139, 27 (2001) https://doi.org/10.1016/S0167-2738(00)00807-9
  3. H. J. Kim, M. H. Litt, S. Y. Nam, and E. M. Shin, Macromol. Res., 11, 458 (2004)
  4. M. A. Ratner and D. F. Shriver, Chem. Rev., 88, 109 (1988) https://doi.org/10.1021/cr00083a006
  5. R. Hooper, L. J. Lyons, D. A. Moline, and R. West, Organometallics, 18, 3249 (1999) https://doi.org/10.1021/om990261l
  6. P. M. Blonsky, D. F. Shriver, P. E. Austin, and H. R. Allcock, J. Am. Chem. Soc., 106, 6854 (1984) https://doi.org/10.1021/ja00334a071
  7. P. Johansson, M. A. Ratner, and D. F. Shriver, J. Phys. Chem. B, 105, 9016 (2001) https://doi.org/10.1021/jp010868r
  8. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Macromolecules, 36, 4577 (2003) https://doi.org/10.1021/ma0340210
  9. J. H. Kim, J. Won, and Y. S. Kang, Macromol. Res., 12, 145 (2004) https://doi.org/10.1007/BF03218383
  10. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, Macromolecules, 34, 6052 (2001) https://doi.org/10.1021/ma0020032
  11. J. H. Kim, S. H. Joo, C. K. Kim, Y. S. Kang, and J. Won, Macromol. Res., 11, 375 (2003) https://doi.org/10.1007/BF03218379
  12. S. Sunderrajan, B. D. Freeman, C. K. Hall, and I. Pinnau, J. Membr. Sci., 182, 1 (2001) https://doi.org/10.1016/S0376-7388(00)00569-X
  13. T. C. Merkel, Z. He, A. Morisato, and I. Pinnau, Chem. Commun., 1596 (2003)
  14. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Chem. Eur. J., 8, 650 (2002) https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  15. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, J. Phys. Chem. B., 106, 2786 (2002) https://doi.org/10.1021/jp010481o
  16. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, Macromolecules, 35, 5250 (2002) https://doi.org/10.1021/ma020179t
  17. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, J. Polym. Sci.; Part B: Polym. Phys., 40, 1813 (2002) https://doi.org/10.1002/polb.10241
  18. J. H. Kim, J. Won, and Y. S. Kang, J. Membr. Sci., 237, 299 (2004)
  19. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, J. Membr. Sci., 227, 197 (2003) https://doi.org/10.1016/j.memsci.2003.08.026
  20. B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang, and H. S. Kim, Chem. Commun., 2046 (2001)
  21. J. H. Jin, S. U. Hong, J. Won, and Y. S. Kang, Macromolecules, 33, 4932 (2000) https://doi.org/10.1021/ma000082b
  22. B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc., 129, 1434 (1982) https://doi.org/10.1149/1.2124179
  23. S. Schantz, L. M. Torell, and J. R. Stevens, J. Chem. Phys., 94, 6862 (1991) https://doi.org/10.1063/1.460265
  24. H. Huang and R. Frech, Polymer, 35, 235 (1994) https://doi.org/10.1016/0032-3861(94)90684-X
  25. G. Peterson, L. M. Torell, S. Panero, B. Scrosati, C. J. da Silva, and M. Smith, Solid State Ionics, 60, 55 (1993) https://doi.org/10.1016/0167-2738(93)90274-7
  26. H. Ericson, B. Mattsson, L. M. Torell, H. Rinne, and F. Sundholm, Electrochim Acta, 43, 1401 (1998) https://doi.org/10.1016/S0013-4686(97)10075-5
  27. A. Ferry, P. Jacobsson, and L. M. Torell, Electrochim. Acta, 40, 2369 (1995) https://doi.org/10.1016/0013-4686(95)00196-L
  28. S. Chintapalli and R. Frech, Electrochim. Acta, 43, 1395 (1998) https://doi.org/10.1016/S0013-4686(97)10074-3