Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Kim Seong-Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Kang Seong-Wook (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Chang Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Ahn Seon-Hoon (R&D Center, Hyundai Engineering Plastic Co., Ltd.)
  • 발행 : 2006.04.01

초록

Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

키워드

참고문헌

  1. B. M. Novak, Adv. Mater., 5, 283 (1993) https://doi.org/10.1002/adma.19930050413
  2. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 573 (1994) https://doi.org/10.1021/cm00041a002
  3. Y. I. Tien and K. H. Wei, Macromolecules, 34, 9045 (2001) https://doi.org/10.1021/ma010551p
  4. S. H. Kim, S. H. Ahn, and T. Hirai T. Polymer, 44, 5625 (2003) https://doi.org/10.1016/S0032-3861(03)00623-2
  5. S. H. Ahn, S. H. Kim, B. C. Kim, K. B. Shim, and B. G. Cho, Macromol. Res., 12, 293 (2004) https://doi.org/10.1007/BF03218403
  6. S. H. Ahn, S. H. Kim, and S. G. Lee, J. Appl. Polym. Sci., 94, 812 (2004) https://doi.org/10.1002/app.21007
  7. J. Z. Alexander, B. Morgan, J. Lamelas, and C. A. Wilkie, Chem. Mater., 13, 3774 (2001) https://doi.org/10.1021/cm000984r
  8. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Chem. Phys. Lett., 370, 820 (2003) https://doi.org/10.1016/S0009-2614(03)00187-8
  9. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, Wiley, New York, 2000
  10. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001) https://doi.org/10.1016/S0032-3861(01)00552-3
  11. S. Kumar, H. Doshi, M. Srinivasrao, J. O. Park, and D. A. Schiraldi, Polymer, 43, 1701 (2002) https://doi.org/10.1016/S0032-3861(01)00744-3
  12. J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee, Macromol. Res., 13, 19 (2005) https://doi.org/10.1007/BF03219011
  13. J. Y. Kim and S. H. Kim, J. Polym. Sci.; Part B: Polym. Phys., 43, 3600 (2005) https://doi.org/10.1002/polb.20626
  14. J. Y. Kim and S. H. Kim, Polym. Int., 55, 449 (2006) https://doi.org/10.1002/pi.1997
  15. M. Avrami, J. Chem. Phys., 7, 1103 (1939) https://doi.org/10.1063/1.1750380
  16. M. Avrami, J. Chem. Phys., 8, 212 (1940) https://doi.org/10.1063/1.1750631
  17. P. H. Cebe and S. D. Hong, Polymer, 27, 1183 (1986) https://doi.org/10.1016/0032-3861(86)90006-6
  18. X. F. Lu and J. N. Hay, Polymer, 42, 9423 (2001) https://doi.org/10.1016/S0032-3861(01)00502-X
  19. S. Z. D. Cheng, Z. Q. Wu, and B. Wunderlich, Macromolecules, 20, 2802 (1987) https://doi.org/10.1021/ma00177a028
  20. H. G. Kim and R. E. Robertson, J. Polym. Sci. Polym. Phys. Ed., 36, 1757 (1998) https://doi.org/10.1002/(SICI)1099-0488(19980730)36:10<1757::AID-POLB17>3.0.CO;2-8
  21. D. J. Blundell, Polymer, 37, 1167 (1987) https://doi.org/10.1016/0032-3861(96)80843-3
  22. F. J. Medellin-Rodriguez, P. J. Phillips, and J. S. Lin, Macromolecules, 29, 7491 (1996) https://doi.org/10.1021/ma9511659
  23. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani, Macromol. Res., 11, 62 (2003) https://doi.org/10.1007/BF03218279
  24. Y. Lee and R. S. Porter, Macromolecules, 20, 1336 (1987) https://doi.org/10.1021/ma00172a028
  25. P. Supaphol, J. Appl. Polym. Sci., 82, 1083 (2001) https://doi.org/10.1002/app.1943
  26. J. D. Hoffman and J. J. Week, J. Chem. Phys., 37, 1723 (1962) https://doi.org/10.1063/1.1733363
  27. J. Ma, S. Q. Zhang, Z. Qi, G. Li, and Y. Hu, J. Appl. Polym. Sci., 83, 1978 (2002) https://doi.org/10.1002/app.10127
  28. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in Treatise on Solid State Chemistry: Crystalline and Non-crystalline Solids, N. B. Hannay, Ed., Plenum Press, New York, 1976, Vol. 3
  29. J. W. Park, D. K. Kim, and S. S. Im, Polym. Int., 51, 239 (2002) https://doi.org/10.1002/pi.848
  30. W. D. Lee, E. S. Yoo, and S. S. Im, Polymer, 44, 6617 (2003) https://doi.org/10.1016/j.polymer.2003.08.002
  31. S. I. Han, S. W. Kang, B. S. Kim, and S. S. Im, Adv. Funct. Mater., 15, 367 (2005) https://doi.org/10.1002/adfm.200590000
  32. S. Buchner, D. Wiswe, and H. G. Zachmann, Polymer, 30, 480 (1989) https://doi.org/10.1016/0032-3861(89)90018-9
  33. J. Lauritzen and J. D. Hoffmann, J. Appl. Phys., 44, 4340 (1973) https://doi.org/10.1063/1.1661962
  34. R. Daubeny, P. De, and C. W. Bunn, Proc. R. Soc. London A, 226, 531 (1954)
  35. A. J. Lovinger, D. D. Davis, and F. J. Padden, Polymer, 26, 1595 (1985) https://doi.org/10.1016/0032-3861(85)90270-8
  36. P. Xing, X. Ai, L. Dong, and Z. Feng, Macromolecules, 31, 6898 (1998) https://doi.org/10.1021/ma980256d
  37. J. I. Lauritzen and J. D. Hoffman, J. Res. Natl. Bur. Stand. Sect., 64A, 73 (1960) https://doi.org/10.6028/jres.064A.007
  38. G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, and G. P. Karayannidis, Thermochim. Acta, 427, 117 (2005) https://doi.org/10.1016/j.tca.2004.09.001
  39. K. P. Menard, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton, FL, 1999
  40. J. D. Lichenhan, Comments Inorg. Chem., 17, 115 (1995) https://doi.org/10.1080/02603599508035785
  41. P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichenhan, Macromolecules, 32, 1194 (1998) https://doi.org/10.1021/ma981210n
  42. B. X. Fu, M. Y. Gelfer, B. S. Hsiao, S. Phillips, B. Viers, R. Blanski, and P. Ruth, Polymer, 44, 1499 (2003) https://doi.org/10.1016/S0032-3861(03)00018-1
  43. Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001) https://doi.org/10.1016/S0009-2614(01)00186-5