DOI QR코드

DOI QR Code

Evaluation of Drought Events Using the Rectangular Pulses Poisson Process Model

구형펄스모형을 이용한 가뭄사상의 평가

  • 유철상 (고려대학교 사회환경시스템공학과) ;
  • 김대하 (고려대학교 사회환경시스템공학과)
  • Published : 2006.04.01

Abstract

In this study a theoretical drought severity-duration-frequency analysis is performed based on a simple Rectangular Pulses Poisson Process Model(RPPM). Data set with various durations are prepared for a given truncation level, whose statistics are then derived to be used for parameter estimation. These parameters are then used for the theoretical drought severity-duration-frequency analysis. The analysis is considered for two cases; one is to consider the overlap probability and the other is not. The drought severity of considering the overlap probability increases more as the return period increases. However, the overlap probability itself decreases as the duration increases, which is because the occurrence probability of events decreases as the duration increases. Also, if the duration increases, the events rarely or even not occur, since parameters of the model cannot be estimated in those cases, so the drought severity may not be computed. This is an obvious limitation of the simple RPPM. In this study the return periods of the important drought events occurred in Seoul are estimated using the results of the study. If the return period of an event is assumed to be the longest one among those with various durations, the return periods of some important event in Seoul are estimated to be between 14 and 35 years. These return periods are not so long to indicate that these droughts can occur frequently.

본 연구에서는 구조가 비교적 간단한 구형펄스모형을 이용하여 가뭄의 심도-지속기간-생기빈도 해석을 이론적인 방법으로 수행하였다. 주어진 절단수준에 대해 다양한 지속기간의 자료계열을 구성하고 이에 대한 통계 특성치를 산정하여 모형의 매개변수를 추정하였다. 이렇게 추정된 매개변수는 이론적인 방법으로 가뭄심도-지속기간-생기빈도 해석을 수행하는데 이용되었다. 가뭄심도-지속기간-생기빈도 해석은 각 펄스의 중첩을 고려하는 경우와 고려하지 않는 경우에 대해 각각 나누어 수행하였고 중첩을 적용하는 경우의 가뭄심도는 재현기간이 증가할수록 더욱 커지는 것을 파악할 수 있었다. 그러나 지속기간이 증가할수록 중첩의 정도는 감소하였으며 이는 지속기간이 증가할수록 사상의 발생확률이 크게 작아지기 때문이다. 지속기간이 증가할 경우 발생하는 사상이 거의 없거나 또는 아예 발생하지 않는 경우가 생기며 이러한 경우에는 모형의 매개변수를 추정할 수 없으므로 재현기간에 따른 심도의 추정도 어렵게 된다. 이 점이 구형펄스모형을 적용하는 경우의 한계가 된다 본 연구에서는 서울지점에 발생한 주요 가뭄사상에 대해 본 연구에서의 결과를 적용하여 그 재현기간을 추정하였다. 어떤 가뭄사상의 재현기간을 가능한 지속기간별로 추정된 재현기간 중 가장 큰 것으로 가정한다면 서울지점의 주요 가뭄사상은 약 14년${\sim}$35년 정도의 재현기간을 갖는다. 이는 상대적으로 아주 크지 않은 재현기간이며 이와 같은 가뭄의 발생이 자주 있을 수 있음을 의미한다.

Keywords

References

  1. 건설교통부 (2002). 2001년 가뭄기록조사 보고서
  2. 김상단 (2004). 경기북부 농업가뭄현황. 감시기법 연구. 경기개별연구원
  3. 유철상 (2002). 경기도 지역을 중심으로 한 가뭄의 재현 및 지속특성 분석. 경기개발연구원
  4. 유철상, 김남원, 정광식 (2002). '점 강우모형과 강우강도-지속기간 생기빈도 해석' 한국수자원학회논문집, 한국수자원학회, 제34권, 제6호, pp. 577-586
  5. Chang, T. J. (1991). 'Investigation of precipitation droughts by use of Kriging method.' Journal of Irrigation and Drainage Engineering, ASCE, Vol. 117, No. 6, pp. 935-943 https://doi.org/10.1061/(ASCE)0733-9437(1991)117:6(935)
  6. Chang, T. J. and Kleopa, X. A. (1991). 'A proposed method for drought monitoring.' Water Resources Bulletin, Vol. 27, No. 2, pp. 275-281 https://doi.org/10.1111/j.1752-1688.1991.tb03132.x
  7. Chiew, F. H. S., Piechota, T. C, Dracup, J. A., and McMahon, T. A. (1998). 'El Nino/Southern oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting.' Journal of Hydrology, Vol. 204, pp. 138-149 https://doi.org/10.1016/S0022-1694(97)00121-2
  8. Chung, C and Salas, H. D. (2000). 'Drought occurrence probabilities and risks of dependent hydrologic processes.' Journal of Hydrologic Engineering ASCE, Vol. 5, No. 3, pp. 259-268 https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(259)
  9. Clausen, B. and Pearson, C. P. (1995). 'Regional frequency analysis of annual maximum streamflow drought. ' Journal of Hydrology, Vol. 173, pp. 111-130 https://doi.org/10.1016/0022-1694(95)02713-Y
  10. Dracup, J. A., Lee, K. S., and Paulson Jr., E. G. (1980). 'On the definition of droughts.' Water Resources Research, Vol. 16, No. 2, pp. 297-302 https://doi.org/10.1029/WR016i002p00297
  11. Eagleson, P. S. (1972). 'Dynamics of flood frequency.' Water Resources Research, Vol. 8, No. 4, pp. 878-898 https://doi.org/10.1029/WR008i004p00878
  12. Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P.S. (1989). 'Probabilistic representation of the temporal rainfall by a modified Neymann-Scott rectangular pulses model: Parameter estimation and validation.' Water Resources Research, Vol.25, No.2, pp. 295-302 https://doi.org/10.1029/WR025i002p00295
  13. Fernandez, B. and Salas, J. D. (1999a). 'Return period and risk of hydrologic events. I. Mathematical formulation. ' Journal of Hydrologic Engineering, ASCE, Vol. 4, No. 4, pp. 297-307 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)
  14. Fernandez, B. and Salas, J. D. (1999b). 'Return period and risk of hydrologic events. II. Applications.' Journal of Hydrologic Engineering; ASCE, Vol. 4, No. 4, pp. 308-316 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)
  15. Henriques, A. G. and Santos, M. J. J. (1999). 'Regional drought distribution model.' Physical, Chemical & Earth Sciences (B), Vol. 24, No. 1-2, pp. 19-22 https://doi.org/10.1016/S1464-1909(98)00005-7
  16. Islam, S., Entekhabi, D., and Bras, R.L. (1990). 'Parameter estimation and sensitivity analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall.' Journal of Geophysical Research, Vol. 95, No. D3, pp. 2093-2100 https://doi.org/10.1029/JD095iD03p02093
  17. Karl, T. R. (1983). 'Some spatial characteristics of drought duration in the United States.' Journal of Climate and Applied Meteorology, Vol. 22, pp. 1356-1366 https://doi.org/10.1175/1520-0450(1983)022<1356:SSCODD>2.0.CO;2
  18. McKee, T. B., Doesken, N. J, and Kleist, J. (1993). 'The relationship of drought frequency and duration to time scales.' Preprints, 8th Conference on Applied Climatology, 17-22 January, Anaheim, CA, 179-184
  19. National Drought Mitigation Center (2000) Drought Science: Understanding and Defining Drought. http://enso.unl.edu/ndmc/enigma/def2.htm
  20. Palmer, W. C. (1965) Meteorological Drought. Research Paper No. 45, U.S. Weather Bureau, Washington, D.C
  21. Piechota, T. C. and Dracup, J. A. (1996) 'Drought and regional hydrologic variation in the United States: Association with the El Nino-Southern Oscillation.' Water Resources Research, Vol. 32, No. 5, pp. 1359-1373 https://doi.org/10.1029/96WR00353
  22. Raines, T. H., and Valdes, J. B. (1993) 'Estimation of flood frequencies for ungaged catchments.' Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 10, pp. 1138-1154 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:10(1138)
  23. Rodriguez-Iturbe, I., Cunpta, V. K., Waymire, E. (1984) 'Scale Considerations in the Modeling of Temporal Rainfall.' Water Resources Research, Vol. 20, No. 11, pp. 1611-1619 https://doi.org/10.1029/WR020i011p01611
  24. Rodriguez-Iturbe, I., Cox, D.R., I., and Isham, V. (1987) 'Some models for rainfall based on stochastic point processes.' Proceedings of the Royal Society of London, Vol. A410, pp. 269-288
  25. Rodriguez-Iturbe, I., Cox, D.R., I., and Isham, V. (2988) 'A point process model for rainfall: Further developments.' Proceedings of the Royal Society of London, Vol. A417, pp. 283-298
  26. Salas, J. D., Chung, C. and Fernandez, B. (2001) 'Relating autocorrelations and crossing rates of continuous- and discrete-valued hydrologic processes.' Journal of Hydrologic Engineering, ASCE, Vol. 6, No. 2, pp. 100-118 https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(109)
  27. Shin, H. S. and Salas, J. D. (2000) 'Regional drought analysis based on neural networks.' Journal of Hydrologic Engineering, ASCE, Vol. 5, No. 2, pp. 145-155 https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(145)
  28. Wang, D.-C. and Salas, J. D. (1989) 'Stochastic modeling and generation of droughts.' Hydrologic Engineering 89 Proceedings, ASCE
  29. Yevjevich, V. (1967) 'An objective approach to definitions and investigations of continental hydrologic droughts.' Hydrology Papers No. 23, Colorado State University, Fort Collins, USA

Cited by

  1. A multimodel assessment of the climate change effect on the drought severity-duration-frequency relationship vol.27, pp.19, 2013, https://doi.org/10.1002/hyp.9390
  2. A Study of New Modified Neyman-Scott Rectangular Pulse Model Development Using Direct Parameter Estimation vol.44, pp.2, 2011, https://doi.org/10.3741/JKWRA.2011.44.2.135
  3. Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea vol.34, pp.3, 2011, https://doi.org/10.1016/j.advwatres.2010.12.010
  4. Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach vol.34, pp.1, 2014, https://doi.org/10.1002/joc.3666