Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data

GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발

  • 장재동 (캐나다 Laval 대학교 Geomatics 학과)
  • Published : 2006.04.01

Abstract

Digital airborne image must be precisely orthorectified to become geographical information. For orthorectification of airborne images, GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) elevation data were employed. In this study, 635 frame airborne images were produced and LIDAR data were converted to raster image for applying to image orthorectification. To derive images with constant brightness, flat field correction was applied to images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated by collecting 50 ground control points from arbitrary five images and LIDAR intensity image. As validation result, RMSE (Root Mean Square Error) was 0.387 as almost same as only two times of pixel spatial resolution. It is possible that this automatic orthorectification method of airborne image with higher precision is applied to airborne image industry.

항공관측으로 얻어지는 디지털 영상은 지리정보로써의 가치를 가지기 위해서는 정밀하게 정사보정되어야 한다. 항공영상의 자동 정사보정을 위해 카메라와 함께 설치된 GPS/INS (Global Positioning System/Inertial Navigation System) 자료와 LIDAR (LIght Detection And Ranging) 지표고도 자료를 이용하였다. 본 연구에서 635개 항공영상이 생산되고 LIDAR 자료는 정사보정에 적용하기 위하여 격자영상 형태로 변환되었다. 영상 전체적으로 일정한 명도를 가지기 위해서, flat field 수정을 영상에 적용하였다. 영상은 내부방위와 GPS/INS를 이용한 외부방위를 계산하여 기하보정되고, LIDAR 지표고도 영상을 이용하여 정사보정되었다. 정사보정의 정도는 임의의 5개 영상과 LIDAR 반사강도 영상에서 50개 지상기준점을 수집하여 검증되었다. 검정된 결과로써 RMSE (Root Mean Square Error)는 화소 해상도의 단지 2배에 해당하는 0.387 m를 도출하였다. 높은 정도를 가진 자동 항공영상 정사보정 방법은 항공영상 산업에 적용 가능할 것이다.

Keywords

References

  1. Ghitter,G. S., W. W. Bowers, and S. E. Franklin, 1995. Discrimination of adelgiddamage on single balsam fir trees with aerial remote sensing data, International Journal of Remote Sensing, 16,2779-2794 https://doi.org/10.1080/01431169508954591
  2. Moskal, L. M., and S. E. Franklin, 2004. Relationship betweenairborne multispectral image texture and aspen Defoliation, International Journal of Remote Sensing, 25(14),2701-2711 https://doi.org/10.1080/01431160310001642304
  3. Koukoulas, S., and G. A. Blackburn 2005. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data, International Journal of Remote Sensing 26(3), 431-455 https://doi.org/10.1080/0143116042000298289
  4. 윤영보, 황태현, 조성익, 박종현,2004. Landsat 영상의 온라인 자동 기하보정 시스템, 한국지리정보학회지, 7(4),15-23
  5. Cramer, M., D. Stallmann, and N. Haala, 1997. High precision georeferencing using GPS/INS and image matching, Proc. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Alberta, Canada, June 1997,453-462
  6. Mostafa, M. M. R., and K. P. Schwarz, 2001. Digital image georeferencing from a multiple camera system by GPS/INS, ISPRS Journal of Photogramrnetry & Remote Sensing, 56, 1-12 https://doi.org/10.1016/S0924-2716(01)00030-2
  7. Schwarz, K. P., M. A. Chapman, M. E. Cannon, and P. Gong, 1993. An Integrated INS/GPS approach to the georeferencing of remotely sensed data, Photogrammetric engineering & Remote sensing, 59( 11), 1667-1674
  8. Jang, I.-D., V. Payan, A. A. Viau, and A. Devost, 2005. The use of airborne LIDAR and multispectral sensors for orchard tree inventory, International Journal of Remote Sensing(unpublished data)
  9. Nguyen, A. T., Stow, D. A., Hope, A. S. and C. Benkelman, 1996. In: Second International Airborne Remote Sensing Conference and Exhibition, San Francisco, CA, USA, A simple method for vignette correction of airborne digital camera data 3, 102-111