Abstract
In a conventional ICA(Independent Component Analysis) based face recognition method, PCA(Principal Component Analysis) first is used for feature extraction, ICA learning method then is applied for feature enhancement in the reduced dimension. It is not considered that a necessary component can be located in the discarded feature space. In the new ICA(NICA), learning extracts features using the magnitude of kurtosis (4-th order central moment or cumulant). But, the pure ICA method can not discard noise effectively. The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. Namely, PCA does whitening and noise filtering. ICA performs feature extraction. Experiment results show the effectiveness of the new ICA method compared to the conventional ICA approach.
기존의 독립 요소 방법에 의한 얼굴인식에서는 주 요소 해석법으로 고유치 크기에 의해 특징을 추출하고 감소된 차원에서 특징 개선을 위한 독립 요소 해석법의 학습을 수행한다. 제거된 특징 공간 내에 필요한 요소가 있는 경우를 고려하지 못한 것이다. 새로운 방법은 독립 요소 해석에 의한 학습을 먼저 시행하고 분리된 데이터를 4차 중심 모멘트에 의한 축적 계수(cumulant)인 커토시스(kurtosis)의 절대값 크기에 의하여 특징을 추출한다. 하지만 독립 요소 방법은 효과적으로 노이즈를 제거하지 못한다. 두 방법의 결합효과는 주 요소 해석법을 노이즈 필터로 사용 할 때 극대화 될 수 있다. 즉 주 요소 해석법을 백색화와 노이즈 필터로 하고 독립 요소 해석법을 특징 추출 방법으로 사용하는 것이다. 실험 결과는 새로운 방법론이 기존의 방법론보다 우수함을 보여준다.