= 06-31-4B-04 S+ A58 =£ 2] '06-4 Vol.31 No4B

frc

Pejo] 2BAE vUFS 3 non-SQL
delg A8 =gy

Ao A E, A E, YA

Implementation of Non-SQL Data Server Framework
Applying Web Tier Object Modeling

Ki-hyeon Kwon*, Sang-ho Cheon**, Hyung-jin Choi** Regular Members

2 o

dElZele]= ofEe|Aoid /e 13 E4b olF|HAXE MU wlv o= m=] AR} FellA AEten &
A% (cohesion) S #o]3 AS7t A7 AP H(coupling)y FF7] sl doj#] Ao} Ao Afdate]
< s Felske A v|AUs 229 O9r) He delEenty)E ALt dejeue]l~ A =44
Aol dejEly) AL F G dis AHeshe o] $AHeR Pasjrl o] &ellA= DONSL(Data Server
of Non SQL query) ol7l€lx& AM|Alsle] o]2idl EAlHE s|H3luxl qic) o] oppldM= 4 Bl 2BAE w
da) whg AlgEb AlZ(tier)7ke] AFPEE 37 dHolewo]A dFo| HEEA] A8 DAO(Data Access
Object)¢} EjEl S Aoz Hejsle] o]=g EAIHE A dch A4 W82 DAOIA lEE AAE Al
ke ek 53 DAO /g 8018 sk wbdt SQL Ao #bs S B8 =EdlAA A=l a3t vhy,
el ESAA #2]A] AET(Automated Executed Transaction)®t MET(Manual Executed Transaction)E & 'a‘zq
o7 2831 uhgel s AlAsla Alxgle FRsck

Key Words : data access object, non-sal data server, AET(Automatic Executed Transaction)
ABSTRACT

Various aspects should be taken into account while developing a distributed architecture based on a multi-tier
model or an enterprise architecture. Among those, the separation of role between page designer and page
developer, defining entity which is used for database connection and transaction processing are very much
important. In this paper, we presented DONSL(Data Server of Non SQL query) architecture to solve these
problems applying web tier object modelling. This architecture solves the above problems by simplifying tiers
coupling and removing DAO(Data Access Object) and entity from programming logic. We concentrate upon
these three parts. One is about how to develop the DAO not concerning the entity modification, another is
automatic transaction processing technique including SQL generation and the other is how to use the
AET/MET(Automated/Manual Executed Transaction) effectively.

* Zydo)ta AR REAIZERE AR B 33bA ¥ (kweon @ kangwon.ac.kr),
wx 7o gkn ITSA 38 Eh) 73567813 (sheheon61 @empal.com, choihj@kangwon.ac kr)
=THE KICS2005-10-405, AU} 2005 104 13Y, HF=FA¢LA) : 20061d 39 159

285

P-5A418}13] =) "06-4 Vol.31 No4B

I . Introduction

There is significant increase in the researches
relating application of framework and pattern on
any system. in distributed environment. The
need to apply framework and pattern to any sys-
tem development is for maximizing the interoper-
ability, extensibility and reusability of the web ap-

| To maximize the reusability and to

plication“
satisfy the interoperability, it is necessary to meet
following conditions: First, the separation of role
between page designer and page developer should
be done. Second, the entity should be made com-
mon within the system. Third, the SQL query ob-
ject that is needed to connect database must be
created automatically. Fourth, transaction can be
automatically processed by agent.

This paper is organized as follows. Section I
presents MVC framework and object modeling.
Section IIT describes non-SQL concept. Section IV
presents DONSL transaction processing using
agent. Section V discusses DONSL architecture
based on MVC model, while section VI describes
the implementation of DONSL architecture and its
performance evaluation. The conclusion is in sec-
tion VIIL

I . MVC Framework and Object Modeling

2.1 MVC Framework

MVC framework minimizes the alteration ef-
fects due to change in logic™®. In distributed sys-
tem, model is expressed in terms of entity and
used for handling data"”’. Since entity related
items must be modified whenever it needs modi-
fication. There is the problem to implement sepa-
rately the presentation entity and DBMS entity
which tighten the coupling between tiers. Since
SQL query is always dependent on the database,

DAO entity needs to be considered equally. The

changes in SQL query logic or entity or database
affects all related tiers.

2.2 Object Modeling
Object modeling based on MVC framework ap-

286

plies MVC concept to web-tier in web application
server (WAS). It simplifies the modeling and makes
WAS-tier transaction processing automatic. The en-
tity can remove tight coupling problem among
tiers through common APIL

If. Non SQL Concept

In non-SQL concept,. a developer should not
include SQL query logic in DAO though the
common method to access any database is
through DAO.

List 1. An Example of DAO
5 List getEmployeeList(String empno, name){

12 Statement stmt = con.createStatement();

13 String query=“SELECT empno, name, address
FROM EMP”;

14 query += “where empno = ” + empno + “”;

15 query += “and name like '%” + name +
“gpvs

16 ResultSet rs = stmt.executeQuery(query)

17 }

The lines 13-15 in List 1 can be expressed in
many different ways. If non-SQL concept is ap-
plied, we can remove these kinds of SQL query
from DAO so that we don’t need to reconfigure
server whenever the query is reconstructed.

In the List 2, those SQL lines are replaced by
single line i.e. function queryGenerator(). The de-
veloper only needs to write queryGenerator (param)
function.

List 2. Removal of SQL Query.

1 public List getEmployeeList(Hashtable param){
2 Statement stmt = con.createStatement();

3

4 String query = queryGenerator(param);

5

6 ResultSet rs = stmt.executeQuery(query);

7}

If the SQL query is “select empno, name, ad-

=i/ e 2EAE ndgs B3 non-SQL wlolEl Ay Ze|qje 7

dress from EMP where empno=‘1111" and name=
‘Kwon’, it can also be expressed in following

ways:

(1) “select empno, name, address from EMP”

(2) “select empno, name, address from EMP
where name=‘Kwon’”

(3) “select empno, name, address from EMP
where empno=‘1111" and name=‘Kwon’”

etc.

The above sample query can be divided into
“select empno, name, address from EMP where
1=17, “and empno=111”, “and name=Kwon”. If
the value of empno or name is null, then “and
empno=°‘111"" or “and name=‘Kwon’” needs to be
removed.

Let’s suppose, the SQL query is split and
saved into XML as in List 3. ‘?’ represents the
part where parameter will be included. The order
of *?” in 2, 3 lines and of 5, 6 lines must match.
When SQL query is executed taking parame-
ters(EMPNO, NAME), the automatic SQL query
logic analyzes according to line and ‘?° and
makes ready the next execution. After analyzing
both parameters, it checks whether EMPNO pa-
rameter is NULL or not. If it is, it deletes line
2, similarly in the case of NAME too.

List 3. Generation of SQL query by Admin Tool.

1 <D-QUERY>select empno, name, address from

EMP where 1=1

and empno=?’

and name=‘?

</D-QUERY >

<D-INPARAM NO=“1"

EMPNO</D-INPARAM>

6 <D-INPARAM NO=“2”
NAME</D-INPARAM>

wBA W

TYPE=“String”>

TYPE=“String”>

As in List 4, many SQL queries can be in-
cluded into one transaction. DONSL container cre-
ates one transaction instance after analyzing the
settings, and creates three SQL encapsulated in-
stances for including in the transaction.

List 4. XML Setting of Transaction

1 <D-TX GNAME=“bbs” NAME="DeleteBBS_TX"
TYPE=“required”>

2 <D-AGENT>com.nosco.bbs.agent.BbsAgent
</D-Agent>

3 <D-WORK TYPE="D-SQL”>selectEtcOwner
BBSSQL</D-WORK>

4 <D-WORK TYPE=“D-SQL”>deleteBBSSQL
</D-WORK>

5 <D-WORKTYPE=“D-SQL”>selectDeleteStepSQL
</D-WORK>

6 <COMMENT>Delete the article of BBS
</COMMENT>

7 </D-TX>

The transaction management is done according
to AET (Automatic Executed Transaction) and
MET(Manual Executed Transaction) which are ex-
plained in detail in the next section. AET is used
in DONSL by default. But, we used MET in this
case. In List 4, there are three SQL queries and
brings problem which to be executed first. MET
is used to solve this problem which uses the re-
sult of first SQL as parameter to the second and

similarly the third gets from second.

IV. DOSNL Transaction Processing
using Agent

DONSL uses automatic managed transaction(AMT)
where AMT manages automatically all the con-
tents set in XML. The execution of transaction is
done in two ways : AET(Automatic Execution Tran-
saction) and MET(Manual Execution Transaction).

4.1 Automatic Agent Deployment

We suppose that DONSL server acts from re-
mote for any web server. The programming is
done in web server and the developed agent auto-
matically moves to DONSL server. Since this de-
ployment keeps inspection on changing of agent,
it is effective to use only during project develop-
ment but not after completion.

287

PZFEAIEI)=F2] "064 Vol.31 NodB

Automatic Manual
Agent Agent
Deploy Deploy

Receive Agent
Save Agent
Agent Londer

WebServer or Client

37 1. AETS} MET A3
Fig. 1. Workflow of AET and MET

4.2 Manual Agent Deployment

The main difference is that it uses web admin
tool provided by DONSL server to upload agent
class. It becomes a problem if agents are more
than normal. It is more effective after the project
completion and can also reduce overload due to

agent.

V. MVC Model based DONSL architecture

5.1 DONSL Architecture

As in Fig. 2, DONSL architecture has web tier,
WAS-tiered DONSL container and database. Web
tier applies MVC concept and uses IResult entity
as model, WorkerBean as view, and Controller
and Agent as controller. The DONSL container
connects an agent in the object pool and the agent
executes the automatic SQL query, and provides
communication among each tier on XML basis. In
this architecture, the page designer and software
developer develop JSP part but software developer
alone develops WorkerBean, Controller, Agent,
DONSL container and SQL properties(XML).

Web-Tier S
DONSL ===
(sP J > WorkerBean(V) container m
Z
~ (Fomm)| Automate
. 3 1 SQL-query
DONSL. C d } ~

XML

vy
IResuitM) |1 if Viual (Agent)
(Resunm) ; l Access ’ Crger)

......... Object Pociing

TN

Move
222 2. DONSL °}7ielA
Fig. 2. DONSL Architecture

288

5.2 Advantages of DONSL

The advantages of DONSL architecture are as
follows:

First, one side object modeling becomes possi-
ble in distributed environment and it shortens de-:
veloping time making transaction processing sim-
ple and error modification easy by convert-
ing(DAO class remove) SQL-query logics into
SQL-properties. Second, error modification time
can be shortened by including object transmission
among tiers into XML properties(Entity class re-
move). Third, it also supports distributed trans-
action and has advantages like performance max-
imization, WAS-tier development in low cost, low

maintenance cost.
VI. Implementation & Performance Evaluation

6.1 Prototype Implementation

DONSL prototype can be divided into two parts,
DONSL container and DONSL client. DONSL con-
tainer consists of 4 kinds of packages. They are
Connector package, Transaction package, Classloader
package and Pool package. Transaction package
being the core part of DONSL architecture man-
ages the creation and processing of transaction.

TxManager handles starting and ending of all
unit transaction as shown in Fig. 3. TxProcessor
encapsulates the transaction setting details of
DONSL administration tool item-wise. It passes
UserTransaction to the agent, and calls the agent’s
execution method. DefaultDonslAgent is im-
plemented executing WorkUnit.

The relation between UserTransaction and
WorkUnit is one to many i.e. many jobs can be

run in one transaction. It should be noticed from

TxManager / O <t O
j TWorkUnit

10bject
l‘l /
TxProcessor DefaultDonslApent

1

1 1DonslAgent [UserTransaction
1
l<<usc>> \ \\ /

UserTransectionFactory UserT: - 0 WorkUnit

<instantiate>> 1

J% 3. EdA AE g s oolo|ad

Fig. 3. Class Diagram of Transaction Processing

=2/ U 2BAE wds)S B3 non-SQL HlolE] AW =Y 4

Fig. 3 that the TxProcessor, DefaultDonslAgent,
UserTransaction, WorkUnit commonly get in-
heritance from IObject. And, connector package
was designed using servlet which can execute
DONSL container from any servlet container.

6.2 Prototype Usage Procedure

The followings are the setting procedure of
DONSL admin tool:

First, transaction list is registered executing
transaction menu at first which is made on the
basis of all required transactions. Unique trans-
action name and comment should be given, and
details can be added any time later. Similary, da-
tabase and SQL details are enlisted. Then, unit
transaction details are set. When the execution
method of transaction SQL list is not simple, the
developer defined agent must be implemented. At
this time, transaction details can be changed after
setting necessary agents from agent menu. The
agent programming code can be uploaded directly
or after compiling. In this way, DONSL server
settings are completed. Only client programming
is now required which can be done almost similar
way as general JDBC programming. The follow-
ing is the source code for accessing DONSL
server from client(List 5):

List 5. Client Source Code

DSURL url = new DSURL(“donsl:/test@]local-
host:8888:ds/Donsl”™);

DSConnection conn =DSConnectionFactory.getDS
Connection(url, null);

ParameterString[] parammNames = { “COFFEE_
NAME” }

NameString[] paramValues = { “java” };
DSStatement stmt = conn.createStatement();
stmt.setParams(paramNames, paramValues);
NameString txName = “Test]_TX”;
stmt.execute(txName);

IResultSetHouse house = stmt.getResultSetHouse();
IResultSet result=house.getResultSet(0);
while(result.next()){
System.out.println(result.getString("COFFEE_NA

ME 7));
}

6.3 Performance Evaluation

Performance evaluation was done comparing
with J2EE platform Java PetStore™ application.
DONSL simply changed Java PetStore application
into DONSL server accessible format. For making
overload used in the test reasonable, the following
settings are done in the Microsoft Web Applicati-

on Stress Tool™,

- Warm up Time: 1 minute
- Measurement Time: 5 minute
- Think Time: 5~35 seconds(avg. 20 sec)

TTFB(Time to First Byte): The time between
sending request and getting first 1 byte response.

TTLB(Time to Last Byte): The time between
sending request and getting whole response.

For the best results, the actual test was done
taking measurements after passing warm up time(1l
min.) and each user’s think time(5~35 sec.). After
setting hardware and overload percentage propetly,
the test was done generating requests from more
than 50 virtual users till occurrence of Socket
Error or Internal Server Error(HTTP Error code
500). The result was obtained as in Fig. 4.
Having analyzing the above graph we proved that
the DONSL server yields 5 times good perform-
ance when the users are 50. When more than 50

there is more significant difference. In case of

25000

20000 /

15000

EJB TTLE

—+—DONSL T1FB
— —DONSLTTLE
-£—EJB TTFE
10000 ——EB TTLB

Time(ms)

OONSL TTLB/TTFB

5000
EJB TTFB g
.//_J‘/u/‘ . _,«/

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Users

223 4. DONSL#} EJB -$5A12F nla
Fig. 4. Comparison Graph of Response Time

289

L2 83 =84] '064 Vol.31 No4B

I2EE environment, the measurement was not pos-
sible due to the occurrence of Socket Error when

there are more than 250 users.
VI. Conclusion

In this paper, we have presented DONSL archi-
tecture which separates business logic and pre-
sentation logic using non-SQL data server frame-
work. It also improves the productivity of com-
plex web application and uses agent technology,
supports distributed transaction. It removes SQL
query from business logic and handles those quer-
ies by XML. Hence, it offers many advantages
over traditional approach to web application devel-
opment that relies solely on MVC model. Though
DONSL architecture provided much relief to the
enterprises who were looking for the solution to
increasing complex web application, there is still
a lot to do in order to improve broad acceptance,

compatibility and standardization.
REFERENCES

(1] D. Schwabed, G. Rossidd, “An object-oriented
approach to web-based application desing”,
Theory and Practice of Object Systems
(TAPOS), 4, 1998. :

{2) R. Johnson, “Frameworks = Patterns+ Compo-
nents”, Communication of ACM, 40, 1997.

(3] F. Bushchmann, R. Meunier, H. Rohnert, P.
Sommerland, and M. Stal, “Pattern-Oriented
Software Architecture : A System of Patterns”,
Willey and Sons, 1996.

(4] D. C. Schmidt, “Experience using Design
Patterns to Develop Reusable Object-Oriented

- Communication Software”, Communication of
ACM, 38, 1995.

(5] M. Jacyntho, D. Schwabe, G. Rossi, “A
Software Architecture for Structuring Complex
Web Applications”, Int. WWW conference, 2002.

(6] K. Ilijima, J. Ivins, “An Alternate Three-
Tiered Architecture for Improving Interope-
rability for Software Components”, Int. WWW
Conference, 2003.

{7) S. H Cheon, K. H Kwon, H. J. Choi,
“Developing an Automatic ~Components
Creating System in Distributed Environment”,

290

Korea Digital contents, 2, 2001.

(8) Sun Java Software, “Java Pet Store”, http://
java.sun.com/reference/blueprints/, 2004.

(9] Microsoft Software, “Web Application Stress
Tool”, http://fwww.bridgeport. . edu/sed/projects/
¢s597/Fall_2002/jishah/web_application_
stress.htm, 2002.

(10) B. Goetz, “Java Theory and Practice : State
Replication in the Web Tier”, http://www-
128.ibm.com/developerworks/java/library/j-
jtp07294.html, 2004.

(11) 3P, olF3}, 2147, AWHE, “AlojHas
S 97 MR Alzdle] AN, dE
&3] F-2], 24(12B), pp.2225-2232, 1999.

A 7| 8 (Ki-hyeon Kwon) Az
g’ 19934 29 7RIk AR
At &4
199511 29 AzxARKET olst
At
2000 8¥ FHFElAEE} 0%
HPAL :

20023~ ZHdopsta A
REAFI ARFATIA

[
0
fob

(Sang-ho Cheon) A3l

19861 24 APt 4=3i=}
Z4]

20024 29 e ol
AL

§ 200513 2¥ Zkddigkw A5

F}ata} o]ghital

| 198543~1989'd g=slek ALk

- 198913~1997d (DA%
19973~&A (F) LEA)] oAb
<A Bol HIIEAAR], FARAE], vlE9o]

& 7 (Hyung-jin Choi) A3l
1982 29 ofdeNekaL Eeist
5} 24

19879 24 U¥EA It
ARgsl) FEbAL

19908 24 FE Aw-FE
3} FEhAl

1990%3~19911 ETRIAIYA7Y

199113 A AR AR

s
<rol s AR, AR, el

