The Effects of Arsenic Trioxide on Cell Cycle and Apoptosis in Chronic Myelogenous Leukemia Cell Line

만성 골수성 백혈병 세포주에서 As2O3가 세포주기 및 세포고사에 미치는 영향

  • Published : 2006.08.31

Abstract

Leukemia arises in hematopoietic progenitor cells and is characterized by impaired or blocked differentiation, uncontrolled proliferation and resistance to apoptosis. Molecular mechanisms underlying cellular functions by $As_2O_3$, however, have been poorly investigated. The consensus of several reports is that $As_2O_3$ induces apoptosis in leukemia cells by activating genes for apoptosis. The present study aimed to investigate the effects of $As_2O_3$ on the cell cycle and its morphological change and a relationship between the caspase-3 and $As_2O_3$-induced apoptosis. Caspase-3 is involved in $As_2O_3$-induced apoptosis in K562 cells. In this study, to address whether $As_2O_3$-induced apoptosis is mediated by caspase-3 activity, the same samples were probed with a specific antibody. The pretreatment of $25{\mu}M$ Z-VAD-fmk, a specific inhibitor of caspase, decreased $As_2O_3$-induced cytotoxicity. And $As_2O_3$ significantly increased the percentages of the cells accumulated in the G2/M phase of the cell cycle in a time- and dose-dependent manner. Chromatin condensational changes were observed with Hoechst 33258 staining after treatment of $As_2O_3$. It was shown that $As_2O_3$-induced apoptosis is controlled through caspase-3 activation. These results may provide a useful rationale for CML treatment.

Keywords