DOI QR코드

DOI QR Code

Preparation and Luminescence Properties of $Y_{2-x}Gd_xO_3:Eu$ Phosphors by Pechini Method

페치니법에 의한 $Y_{2-x}Gd_xO_3:Eu$ 형광체의 제조와 발광 특성

  • Lee, Dong-Kyu (Dept. of Industrial Chemical Engineering, Chungbuk National University) ;
  • Lee, Jin-Hwa (Dept. of Industrial Chemical Engineering, Chungbuk National University) ;
  • Ahn, Byung-Chul (Dept. of Industrial Chemical Engineering, Chungbuk National University) ;
  • Jun, Sang-Bae (Dept. of Industrial Chemical Engineering, Chungbuk National University)
  • Published : 2006.09.30

Abstract

$Y_{2-x}Gd_xO_3:Eu$, phosphors for plasma display panel(PDP), were prepared by Pechini method which use yttriun chloride, gadolinium chloride, and europium oxide as starting materials. This method is a different way to the synthesis of europium(Eu)-doped phosphors, and it consists of the formation of a polymeric resin obtained by polyesterification between metal chelate compounds and a polyfunctional alcohol. This needs lower temperature than solid-state synthetic method. The prepared $Y_{2-x}Gd_xO_3:Eu$ phosphor particles had spherical shape and coherence. The luminescence intensity of $Y_{2-x}Gd_xO_3:Eu$ phosphor particles increased according to the increase of gadolinium(Gd) content(to 0.8mol%), and $Y_{1.2}Gd_{0.8}O_3:Eu$ phosphors had the highest luminescence intensity under vacuum ultra violet(VUV) excitation. The optimum concentration of Eu in the phosphor and optimum calcination temperature was 3wt% and $1100^{\circ}C$. The prepared phosphors were consist of particle, and its size was between 100nm and 150nm. Among the different polyfunctional alcohols, diethylene glycol(DEG) improved the luminescence intensities of phosphors more than other additives. The Pechini method proved that it is demonstrated to be suitable for the synthesis of phosphors used in PDP.

Keywords

References

  1. R. Feldman, L. Talley, M. Rojeski, T. Vold, and J. A. Woollam, Upper Limit for Magnetoresistance in Silicon Bronze and Phosphor Bronze Wire, Cryogenics, 17, 31 (1997) https://doi.org/10.1016/0011-2275(77)90303-4
  2. B. M. J. Smets, J. G. Verlijsdonk, and J. Rutten, The Jahn-Teller Effect in the Excitation and Emission Spectra of $Ba_6Y_2Al_4O_{15}:Sn^{2+}$ and $Ba_2YAlO_5:Sn^{2+}$ Mater. Res. Bull, 2A, 431 (1989)
  3. S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, and J. M. Tarascon, Synthesis and Electrochemical Properties of Numerous Classes of Vanadates, J. Power Sources, 81, 79 (1999) https://doi.org/10.1016/S0378-7753(99)00137-8
  4. J. Livage, Optical and Electrical Properties of Vanadium Oxides Synthesized from Alkoxides, Coord. Chem Rev., 190, 391 (1999) https://doi.org/10.1016/S0010-8545(99)00096-X
  5. M. Wiegel, M. H. J. Emond, E. R. Stobbe, and G. Blasse, Luminescence of Alkali Tantalates and Niobates, J. Pays. Chem. Solids, 55, 773 (1994) https://doi.org/10.1016/0022-3697(94)90030-2
  6. E. J. Nassar and O. A. Serra, Solid State Reaction between Europium III Chloride and Y-Zeolites, Mater. Chem. Phys., 74, 19 (2002) https://doi.org/10.1016/S0254-0584(01)00404-7
  7. O. A. Serra, S. A. Cicillini, and R. R. Ishiki, A New Procedure to Obtain $Eu^{3+}$ Doped Oxide and Oxosalt Phosphors, J. Alloy. Compd, 303, 316 (2000) https://doi.org/10.1016/S0925-8388(00)00595-8
  8. S. A. Cicillini, P. S. Calefi, C. R. Neri, E. J. Nassar, and 0. A. Serra, Use of Polymeric Resin in the Formation of $SiO_2$ Hybrid Gels, J. Non-Cryst. Solids, 247, 1 (1999) https://doi.org/10.1016/S0022-3093(99)00081-2
  9. H. Yamamoto and S. Okamoto, Efficiency Enhancement by Aluminum Addition to some Oxide Phosphors for Field Emission Display, Display, 21, 93 (2000) https://doi.org/10.1016/S0141-9382(00)00034-2
  10. M. L. Pang, J. Lin, Z. Y. Cheng, J. Fu, R. B. Xing, and S. B. Wang, Patterning and Luminescent Properties of Nanocrystalline $Y_2O_3:Eu^{3+}$ Phosphor Films by Sol-Gel Soft Lithography, Mater. Sci. Eng., 100, 124 (2003) https://doi.org/10.1016/S0921-5107(03)00081-3
  11. L. Sun, J. Yao, C. Liu, C. Liao, and C. Yan, Rare Earth Activated Nanosized Oxide Phosphors Synthesis and Optical Properties, J. Lumines., 87, 447 (2000) https://doi.org/10.1016/S0022-2313(99)00471-8
  12. G. Wakefield, H. A. Keron, P. J. Dobson, and J. L. Hutchison, Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles, J. Colloid Interface Sci., 215, 179 (1999) https://doi.org/10.1006/jcis.1999.6225
  13. W. W. Zhang, W. P. Zhang, P. B. Xie, M. Yin, H. T. Chen, L. Jing, Y. S. Zhang, L. R. Lou, and S. D. Xia, Optical Properties of Nanocrystalline $Y_2O_3:Eu^{3+}$ Depending on Its Odd Structure, J. Colloid Interface Sci., 262, 588 (2003) https://doi.org/10.1016/S0021-9797(03)00169-3
  14. T. Minami, M. Yamazaki, T. Miyata, Y. Kobayashi, and T. Shirai, A New Thin-Film Phosphor Using Multi-component Oxides Composed of $Y_2O_3$ and $GeO_2$, Thin Solid Films, 411, 161 (2002) https://doi.org/10.1016/S0040-6090(02)00206-7
  15. S. S. Yi, J. S. Bae, K. S. Shim, J. H. Jeong, H. L. Park, and P. H. Holloway, Photoluminescence Behavior of $ZnGa_2O_{4-x}Se_x:Mn^{2+}$ Thin Film Phosphors, J. Cryst. Growth, 259, 95 (2003) https://doi.org/10.1016/S0022-0248(03)01588-4
  16. K. A. Hyeon, S. H. Byeon, J. C. Park, D. K. Kim, and K. S. Suh, Highly Enhanced Photoluminescence of $SrTiO_3:Pr$ by Substitution of (Lio.5, Laos) Pair for Sr, Solid State Commun, 115, 99 (2000) https://doi.org/10.1016/S0038-1098(00)00127-7