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AbstractAbstractAbstractAbstract

When X and Y have independent gamma distributions, we develop
a Bayesian procedure for testing the equality of two gamma means.
The reference prior is derived. Using the derived reference prior, we
propose a Bayesian test procedure for the equality of two gamma
means using fractional Bayes factor and intrinsic Bayes factor.
Simulation study and a real data example are provided.
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1. Introduction1. Introduction1. Introduction1. Introduction

A general review of the gamma distribution including several references to

applications in diverse fields is given by Johnson, Kotz and Balakrishnan (1994).

In particular, the gamma distribution has been suggested as the failure time

model, and also received considerable attention in the area of ecology and weather

analysis.

The present paper focuses on Bayesian test for the equality of two gamma

means. In Bayesian testing problem, the Bayes factor under proper priors or

informative priors have been very successful. However, limited information and

time constraints often require the use of noninformative priors. Since

noninformative priors such as Jeffreys' prior or reference prior (Berger and

Bernardo, 1989, 1992) are typically improper so that such priors are only defined

up to arbitrary constants which affects the values of Bayes factors. Spiegalhalter

and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) have made

efforts to compensate for that arbitrariness.
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Spiegalhalter and Smith (1982) used the device of imaginary training samples in

the context of linear model comparisons to choose the arbitrary constants. But the

choice of imaginary training sample depends on the models under comparison, and

so, there is no guarantee that the Bayes factor of Spiegalhalter and Smith (1982)

is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced

the intrinsic Bayes factor using a data-splitting idea, which would eliminate the

arbitrariness of improper priors. O'Hagan (1995) proposed the fractional Bayes

factor. For removing the arbitrariness he used to a portion of the likelihood with a

so-called the fraction . These approaches have shown to be quite useful in

many statistical areas (Kang, Kim and Lee, 2005, 2006).

For two sample gamma models, Shiue and Bain (1983) derived an approximate

F test for testing equality of means when the shape parameters are equal.

Shiue, Bain and Engelhardt (1988) extended the method to the case where the

shape parameters are unequal. Booth, Hobert and Ohman (1999) gave a

detailed review of existing methods for inference concerning the ratio of two

means when the shape parameters are equal and are in proportion. Simulation

studies in Booth, Hobert and Ohman (1999) suggest that intervals obtained by

extending the method in Jensen (1986) and those obtained by bootstrap

calibration have similar performance in terms of length and coverage. Even

though the bootstrap calibration method is computationally intensive, they still

recommended it over the extended Jensen's method because it is much

simpler to implement and is more versatile. Wong, Wu and Sun (2004)

proposed a method based on the modified signed log-likelihood ratio statistic

for small sample inference concerning the ratio of two means when the shape

parameters are equal and are unequal. They argued that the proposed method

gave extremely accurate coverage in simulation studies, and was more direct

and less computational intensive than the calibrated bootstrap method (Booth,

Hobert and Ohman, 1999).

Almost all the work mentioned above is the analysis based on the classical

point of view, there is a little work on this problem from the viewpoint of the

objective Bayesian framework. So we feel a strong necessity to develop objective

Bayesian test procedure for the equality of two gamma means. For dealing this

problem, we use the fractional Bayes factor (O'Hagan, 1995) and the intrinsic

Bayes factor (Berger and Pericchi, 1996).

The outline of the remaining sections is as follows. In Section 2, we introduce

the Bayesian model selection based on the Bayes factor. In Section 3, for some

case, we derive the reference prior. Using the reference prior, we provide the

Bayesian testing procedure based on the fractional Bayes factor and intrinsic

Bayes factors for testing for the equality of two gamma mean parameters. In

Section 4, simulation study and a real example are given.
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2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors

Hypotheses ,  ,⋯ ,  are under consideration, with the data xxxx 
⋯   having probability density function ∣ under model

  ⋯. The parameter vectors are unknown. Let  be the prior

distribution of model  , and let  be the prior probabilities of model ,

  ⋯. Then the posterior probability that the model   is true is

 ∣ 
  






⋅

 

 (1)

where  is the Bayes factor of model  to model   defined by

 ∣
 ∣   



 
 (2)

The  interpreted as the comparative support of the data for the model 

to . The computation of  needs specification of the prior distribution 

and  . Usually, one can use the noninformative prior such as uniform

prior, Jeffreys prior or reference prior in Bayesian analysis. Denote it as 
 .

The use of noninformative priors 
 ⋅ in (2) causes the  to contain

unspecified constants. To solve this problem, Berger and Pericchi (1996)

proposed the intrinsic Bayes factor and O'Hagan (1995) proposed the

fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a

training sample. Let  denote the part of the data to be so used and let

  be the remainder of the data, such that

  
  ∞   ⋯ (3)

In view (3), the posteriors 
 ∣ are well defined. Now, consider the

Bayes factor, , for the rest of the data  , using 
 ∣ as the

priors:

 
 

 ∣ ∣

 

 ∣ ∣
 

⋅
 (4)
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where

  



 


 

and 
 


 


 

are the Bayes factors that would be obtained for the full data  and training

samples , respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to

compute 
. Then, an average over all the possible minimal training

samples contained in the sample is computed. Thus the Arithmetic Intrinsic

Bayes factor (AIBF) of  to   is


 

⋅
 
  




 (5)

where  is the number of all possible minimal training samples. Also the
Median Intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of  to

 is


 

⋅ 
 (6)

where ME indicates the median, here to be taken over all the training sample

Bayes factors. So we can also calculate the posterior probability of   using

(1), where  is replaced by 
 and 

 from (5) and (6).

The fractional Bayes factor (O'Hagan, 1995) is based on a similar intuition to

that behind the intrinsic Bayes factor but, instead of using part of the data to

turn noninformative priors into proper priors, it uses a fraction, , of each

likelihood function,   ∣ , with the remaining   fraction of the
likelihood used for model discrimination. Then the fractional Bayes factor

(FBF) of model  versus model   is


 

⋅ ∣   
 ∣ 

 
⋅







and ∣ is the likelihood function and  specifies a fraction of the
likelihood which is to be used as a prior density. He proposed three ways for

the choice of the fraction . One common choice of  is  , where  is

the size of the minimal training sample, assuming that this number is uniquely

defined. (see O'Hagan, 1995, 1997, and the discussion by Berger and Mortera

of O'Hagan, 1995).
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3. Bayesian Test Procedures3. Bayesian Test Procedures3. Bayesian Test Procedures3. Bayesian Test Procedures

Let  be a gamma distribution with density function

∣  
 



  

 


,,,,   

where   is the mean parameter and    is the shape parameter.

Suppose that ⋯ denote independent random samples from gamma

distribution with the shape parameter  and the mean  , and ⋯
denote independent random samples from gamma distribution with the shape

parameter  and the mean  . Then the joint probability density function is

∣  
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(7)

where      ,    and   . We want to test the hypotheses

     vs.   ≠ . Our interest is to develop a Bayesian test

procedure based on the fractional Bayes factor and the intrinsic Bayes factor

under the noninformative prior.

3.1 Bayesian Test Procedure based on the Fractional Bayes Factor3.1 Bayesian Test Procedure based on the Fractional Bayes Factor3.1 Bayesian Test Procedure based on the Fractional Bayes Factor3.1 Bayesian Test Procedure based on the Fractional Bayes Factor

We now derive the reference priors for different groups of ordering of
  under the hypothesis . Reference priors introduced by Bernardo

(1979), and extended further by Berger and Bernardo (1989,1992) have

become very popular over the years for the development of noninformative

priors.

Under  , the joint density is given by

∣  
 

 



  





  



 
  

  



 
 

× 



  

 

  
  

 

 

(8)

Based on (8), the Fisher information matrix is given by
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,,,,

where ′⋅ is the trigamma function. From the above Fisher information

matrix ,  and  are mutually orthogonal in the sense of Cox and

Reid(1987). Then due to the orthogonality of the parameters, following Datta

and Ghosh (1995), choosing rectangular compacts for each  and  , the

reference priors are given by as follows.

For the gamma populations (8), the reference prior distributions for group of

ordering of    is

  ∝
  ′    



′    




For group of ordering of   and  , the reference prior is

  ∝
  ′    



′    




Note that the two group reference prior and the one-at-a-time reference prior

are the same. Thus the reference prior for the hypothesis  is

    
  ′    



′    




where ′⋅ is the trigamma function. The likelihood function under  is
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Then the element of fractional Bayes factor under  is given by
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For the hypothesis  , the reference prior for μ x , μ y and ν is

    
 

  ′    


′    




This reference prior is derived by Liseo (1993). The likelihood function

under  is
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Thus the element of fractional Bayes factor under  gives as follows.
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Therefore the 
 is given by
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And the ratio of marginal densities with fraction  is
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where
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Thus the fractional Bayes factor of  versus  is given by


  

 
⋅ 

 
. (9)

Note that the calculation of the fractional Bayes factor of H 2 versus H 1
requires two dimensional integration.

3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor

The element 
 of the intrinsic Bayes factor is computed in the derivation

of fractional Bayes factor. So using minimal training sample, we only calculate

the marginal densities under  and  , respectively. The marginal density of

     is finite for all  ≦     ≦  ≦    ≦  under

each hypothesis (see Liseo, 1993). Thus we conclude that any training sample

of size six is a minimal training sample.

The marginal density 
   under  is given by
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where  ≦     ≦  ≦    ≦  . And the marginal density


     under  is given by
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Therefore the AIBF of  versus  is given by


  

 
⋅




 
  


  

   


 (10)

where            . And the MIBF of  versus

 is given by


  

 
⋅




  
   


 (11)

Note that the calculations of the AIBF and MIBF of  versus  require

two dimensional integration. In Section 4, we investigate our testing

procedures.

4. Numerical Studies4. Numerical Studies4. Numerical Studies4. Numerical Studies

In order to assess the Bayesian test procedures, we evaluate the posterior

probability for several configurations  ,   and  . In particular,

for fixed   and  , we take 200 independent random samples of 

and  from the model (7). In our simulation, we examine the cases when

   ,    and ( n 1 ,    (5,5),

, (10,10).

The posterior probabilities of  being true are computed assuming equal

prior probabilities. Table 1 shows the results of the averages and the

standard deviations in parentheses of posterior probabilities. From the Table

1, the fractional Bayes factor and the intrinsic Bayes factors give fairly

reasonable answers. Also the fractional Bayes factor and intrinsic Bayes

factors give similar results for all sample sizes.

Example 1Example 1Example 1Example 1. The data in Table 2 from Cameron and Pauling (1978) are

survival times obtained from the data of first hospital attendance, of six women

with terminal ovarian cancer who were treated with supplemental vitamin C.

Along with each of these six survival times is the mean survival time of 10

individually matched controls. Booth, Hobert and Ohman (1999) analyzed this data

by assuming the survival time of a vitamin C patient follow the gamma

distribution with mean  and shape , and the mean survival times of 10

independent control patients follows the gamma distribution with mean  and

shape  .
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Booth, Hobert and Ohman (1999) reported the 95% confidence interval for

 is (0.102, 1.050). And the confidence intervals based on the signed

log-likelihood ratio method and the modified signed log-likelihood ratio

method by Wong, Wu and Sun (2004) are (0.141, 1.001) and (0.105, 1.032),

respectively.

The value of fractional Bayes factor of  versus  is 
  . We

assume that the prior probabilities are equal. Then the posterior probability

for  is . Also the values of AIBF and MIBF of  versus  are


  and 

 , respectively. We assume that the prior

probabilities are equal. Then the posterior probabilities for  are  and

, respectively. Thus there is slightly evidence for  in terms of the

posterior probability.

<Table 1> The averages and the standard deviations in parentheses of

posterior probabilities

       ∣  ∣  ∣
0.5, 1.0 1,1 5, 5

5,10
10,10

0.552 (0.082)
0.609 (0.133)
0.616 (0.136)

0.571 (0.092)
0.587 (0.124)
0.645 (0.145)

0.571 (0.084)
0.585 (0.115)
0.644 (0.140)

1,3 5, 5
5,10
10,10

0.482 (0.114)
0.490 (0.174)
0.372 (0.201)

0.492 (0.125)
0.471 (0.153)
0.387 (0.214)

0.495 (0.113)
0.478 (0.137)
0.397 (0.208)

1,5 5, 5
5,10
10,10

0.408 (0.143)
0.398 (0.194)
0.239 (0.172)

0.412 (0.152)
0.387 (0.168)
0.245 (0.182)

0.421 (0.140)
0.400 (0.153)
0.261 (0.179)

0.5, 3.0 1,1 5, 5
5,10
10,10

0.556 (0.077)
0.615 (0.130)
0.629 (0.121)

0.580 (0.080)
0.588 (0.111)
0.667 (0.117)

0.578 (0.074)
0.584 (0.106)
0.665 (0.113)

1,3 5, 5
5,10
10,10

0.470 (0.107)
0.490 (0.173)
0.367 (0.208)

0.491 (0.108)
0.474 (0.140)
0.396 (0.217)

0.482 (0.103)
0.472 (0.134)
0.405 (0.214)

1,5 5, 5
5,10
10,10

0.386 (0.138)
0.364 (0.177)
0.196 (0.152)

0.406 (0.139)
0.377 (0.141)
0.218 (0.163)

0.397 (0.133)
0.374 (0.134)
0.235 (0.170)

1.0, 3.0 1,1 5, 5
5,10
10,10

0.559 (0.077)
0.621 (0.109)
0.629 (0.122)

0.587 (0.069)
0.607 (0.088)
0.671 (0.110)

0.583 (0.066)
0.601 (0.085)
0.663 (0.109)

1,3 5, 5
5,10
10,10

0.420 (0.134)
0.387 (0.179)
0.230 (0.186)

0.451 (0.126)
0.410 (0.144)
0.265 (0.196)

0.444 (0.121)
0.412 (0.136)
0.269 (0.190)

1,5 5, 5
5,10
10,10

0.314 (0.125)
0.277 (0.162)
0.085 (0.089)

0.338 (0.123)
0.307 (0.131)
0.097 (0.102)

0.338 (0.118)
0.314 (0.123)
0.104 (0.104)

<Table 2> Survival Times (Days) of Ovarian Cancer Patients
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Patient pair 1 2 3 4 5 6

Mean survival time of matched controls

()
307 690 285 244 371 368

Supplemental vitamin C () 1234 89 201 356 2970 456
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