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AbstractAbstractAbstractAbstract

This paper considers the testing problem for scale changes in
autoregressive processes with heavy-tailed innovations. For a test, we
propose the CUSUM test statistic based on the trimmed residuals. We
perform a simulation study for the mixture normal and Cauchy
innovations.
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1. Introduction1. Introduction1. Introduction1. Introduction

In this paper, we consider the problem of testing scale changes in heavy-tailed

autoregressive processes. It is well known that the data observed in finance and

computer networking follow heavy-tailed distributions. A typical example of this

phenomenon can be found in high frequency financial and network traffic data.

The techniques for the analysis of the heavy tailed data have been developed for

decades and well summarized in Samorodnitsky and Taqqu (1994). Adler, Feldman

and Taqqu (1998) proposed statistical techniques and applications based on their

theoretical background. In particular, Calder and Davis (1998) considered the

parameter estimation in stable ARMA time series.
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Since Hsu, Miller and Wichern (1974) modeled stock returns by using normal

probability model with changing variances, many articles are devoted to detecting

variance changes in time series. For instance, Tsay (1988) studied ARMA models

making allowance for outliers and variance changes. Incln and Tiao (1994)

proposed the following test statistic,  below for variance changes in iid

sample as a centered version of the CUSUM test statistic proposed by Brown,

Durbin and Evans (1975):
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 , (1.1)

where ∼  
 . They showed that the test statistic  has the same

limiting distribution of  ≤  ≤ 
, where   denotes a Brownian bridge.

They also presented the algorithm for the detection of the multiple variance

changes and the location in which the variance change occurs. Lee and Park

(2001) extended Incln and Tiao's method to infinite order moving average

processes, and proposed a CUSUM test based on the squares of the trimmed

observations, which is applicable to the processes contaminated by outliers.

According to their study, the CUSUM test does not perform well in highly

correlated processes. For this reason, Park, Lee and Jeon (2000) adopted the

approach of using the AR(∞) model to discard the effects caused by

correlations. However, their paper does not cover the infinite variance case,

so here we study the CUSUM test for autoregressive processes with infinite

variance.

In this paper, we study the performance of the CUSUM test within the frame

work of autoregressive models with normal mixture and Cauchy innovations, and

demonstrate that the CUSUM test statistic based on the trimmed residuals work

adequately for those models. This paper is organized as follows. In Section 2, we

propose the test statistic and illustrate how the test works for mixture normal

process and infinite variance process. In Section 3, we present the simulation

results on the performance of our test.
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2. CUSUM Test for Scale Changes2. CUSUM Test for Scale Changes2. CUSUM Test for Scale Changes2. CUSUM Test for Scale Changes

In this section, we introduce the CUSUM test for scale changes in

autoregressive models with heavy-tailed innovations. Let us consider the

stationary AR() model satisfying the difference equation:

 
  



     , (2.1)

where  are iid random variables with a common distribution function . The

heavy-tailed distribution under consideration in this paper is as follows:

CASE 1.  is a mixture normal distribution with the density of the form

 
  



, where  denotes the pdf of  
 , and 

  



  . (2.2)

CASE 2.  is an -stable distribution satisfying

    →  as  → ∞ , (2.3)

where 0    2 and  is a finite positive constant,

In order to construct the CUSUM test, we obtain the LSE
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for

 ⋯′ , and calculate the residuals     


    . Lee, Park and

Jeon (2000) considered the CUSUM test in autoregressive models with finite

variance. However, their method cannot be directly applicable to the infinite

variance case. Further, even if the variance exists, the heavy-tailed

distribution highly damages the performance of the CUSUM test (cf. Lee and

Park (2001)). Therefore, we follow the approach to use trimmed residuals.

For ∈ , let  be a number such that     Provided ⋯ are
given, if we set

 =    , if  is an integer,
=      , if  is not an integer,

where   denote the ordered r.v.s of ⋯ , and  is the largest integer

not exceeding ,  is the empirical quantile estimator for  . However, since

the true errors are unobservable, we replace them by the residuals and
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analogously define the residual empirical quantiles   . Based on the trimmed

residuals 
 

   ≤
≤  , we construct the CUSUM test in analogy

of  :

    ≤  ≤ 

  
  






  





 

   , (2.4)

where    
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     .

A large value of  indicates a scales change in time series. Given

significance level , the critical value  is obtained by the equation

     , where = ≤  ≤ 
. For instance, =1.358. In this

paper, we do not provide the proof for the weak convergence of  to 

since we focus on the performance itself of the CUSUM test. We leave this

as the task of future study.

3. Simulation Result and Discussion3. Simulation Result and Discussion3. Simulation Result and Discussion3. Simulation Result and Discussion

In this section, we evaluate the performance of  proposed in (2.4)

through a simulation study. For this task, we examine the performance of 
with the trimming portions =0.05 and =0.95 for the AR(1) process with

heavy tailed distributions. We set up the null and alternative hypotheses:

          ⋯ , (3.1)

and

          ⋯         ⋯     
(3.2)

Here, we focus on the two cases mentioned in (2.2) and (2.3) as follows:

      ∼    
 , (3.3)

and

       ∼ . (3.4)

Empirical sizes and powers are calculated by the proportions of the number of

rejections of the null hypothesis (3.1) out of 1000 repetitions. The empirical powers



Simulation Study on the Scale Change Test

for Autoregressive Models with Heavy-Tailed Innovations

1401

are obtained for  = 0.25, 0.5, 0.75. In each simulation, 100 initial

observations are discarded to remove initialization effects.

Table 1 presents the empirical sizes and powers for the model in (3.3) with

 = 0.1, 0.5, 0.9, =0.9, and 
 = 25, 100 for  = 200, 300 and 500. We

employ = 0.5, 1.8 and 2.0 to investigate the empirical powers. As seen in

the table, the sizes are stable even when the observations are highly

correlated. When the change occurs in the middle of the series, the test has

the best powers as expected. It is also shown that the test tends to perform

better when 
 = 100 than when 

 = 25. Further, it can be seen that the

test can detect the changes well when  is larger than 300.

<Table 1> The empirical sizes and powers of  with =0.05, =0.95 for

(3.3)
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= 0.5 


= 100

 
  0.1 0.5 0.9   0.1 0.5 0.9

size

200 0.044 0.051 0.049

size

200 0.031 0.045 0.036

300 0.044 0.049 0.052 300 0.030 0.043 0.045

500 0.051 0.038 0.045 500 0.042 0.047 0.048

power

=0.5

200

0.25 0.553 0.569 0.547

power

=0.5

200

0.25 0.710 0.673 0.686

0.50 0.902 0.904 0.904 0.50 0.848 0.861 0.848

0.75 0.674 0.679 0.680 0.75 0.616 0.615 0.622

300

0.25 0.713 0.728 0.689

300

0.25 0.859 0.871 0.863

0.50 0.980 0.980 0.976 0.50 0.954 0.960 0.961

0.75 0.897 0.925 0.896 0.75 0.844 0.851 0.843

500

0.25 0.879 0.861 0.888

500

0.25 0.985 0.978 0.968

0.50 0.999 0.999 1.000 0.50 0.999 0.994 0.999

0.75 0.991 0.999 0.993 0.75 0.979 0.969 0.974

power

=1.8

200

0.25 0.478 0.454 0.435

power

=1.8

200

0.25 0.429 0.446 0.411

0.50 0.768 0.754 0.758 0.50 0.718 0.746 0.754

0.75 0.439 0.447 0.437 0.75 0.544 0.543 0.585

300

0.25 0.712 0.690 0.718

300

0.25 0.733 0.716 0.748

0.50 0.922 0.901 0.918 0.50 0.901 0.934 0.922

0.75 0.552 0.583 0.569 0.75 0.748 0.756 0.769

500

0.25 0.945 0.959 0.951

500

0.25 0.950 0.944 0.953

0.50 0.990 0.989 0.987 0.50 0.994 0.993 0.991

0.75 0.741 0.749 0.764 0.75 0.942 0.951 0.937

power

=2.0

200

0.25 0.596 0.616 0.624

power

=2.0

200

0.25 0.570 0.552 0.546

0.05 0.884 0.876 0.891 0.05 0.837 0.817 0.851

0.75 0.574 0.531 0.536 0.75 0.681 0.690 0.655

300

0.25 0.882 0.879 0.861

300

0.25 0.817 0.833 0.808

0.50 0.986 0.981 0.984 0.50 0.958 0.960 0.943

0.75 0.708 0.727 0.685 0.75 0.861 0.866 0.875

500

0.25 0.989 0.993 0.994

500

0.25 0.984 0.977 0.971

0.50 1.000 1.000 1.000 0.50 0.999 0.994 0.998

0.75 0.889 0.876 0.867 0.75 0.984 0.984 0.985

Table 2 presents the empirical sized and powers for the AR(1) model with

Cauchy innovations with =0.1, 0.5, and 0.8 in (3.4) for  = 300, 500, 700,

and 1000. Similarly to the previous case, we obtained reasonably good results.

However, we should point out that the performance in this case is not so

satisfactory as the previous case. To compensate for the power loss, larger

sample sizes are required. All these results enable us to conclude that the

CUSUM test performs adequately for heavy-tailed autoregressive models.

<Table 2 > The empirical sizes and powers of  with =0.05, =0.95 for

(3.3)
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  0.1 0.5 0.8   0.1 0.5 0.8

size
300 0.045 0.053 0.053

size
700 0.039 0.043 0.053

500 0.048 0.051 0.049 1000 0.039 0.043 0.048

power

=0.5

300 0.25 0.282 0.338 0.326

power

=3.0

300 0.25 0.415 0.426 0.549

300 0.50 0.462 0.467 0.439 300 0.50 0.793 0.792 0.895

300 0.75 0.191 0.201 0.231 300 0.75 0.637 0.644 0.759

500 0.25 0.478 0.462 0.488 500 0.25 0.722 0.737 0.824

500 0.50 0.664 0.658 0.689 500 0.50 0.956 0.961 0.987

500 0.75 0.361 0.364 0.384 500 0.75 0.846 0.855 0.931

700 0.25 0.607 0.611 0.629 700 0.25 0.872 0.863 0.953

700 0.50 0.826 0.814 0.814 700 0.50 0.996 0.994 0.999

700 0.75 0.521 0.509 0.538 700 0.75 0.944 0.952 0.977

1000 0.25 0.790 0.806 0.772 1000 0.25 0.973 0.976 0.988

1000 0.50 0.947 0.945 0.933 1000 0.50 0.999 1.000 1.000

1000 0.75 0.720 0.719 0.701 1000 0.75 0.993 0.992 1.000

power

=2.0

300 0.25 0.178 0.181 0.224

power

=4.0

300 0.25 0.598 0.637 0.637

300 0.50 0.433 0.452 0.477 300 0.50 0.940 0.938 0.938

300 0.75 0.309 0.311 0.330 300 0.75 0.802 0.830 0.830

500 0.25 0.357 0.345 0.372 500 0.25 0.903 0.890 0.890

500 0.50 0.651 0.664 0.665 500 0.50 0.963 0.995 0.995

500 0.75 0.474 0.460 0.512 500 0.75 0.973 0.964 0.964

700 0.25 0.480 0.486 0.472 700 0.25 1.000 0.978 0.978

700 0.50 0.806 0.815 0.788 700 0.50 1.000 1.000 1.000

700 0.75 0.588 0.604 0.601 700 0.75 0.995 0.999 0.999

1000 0.25 0.703 0.730 0.711 1000 0.25 0.998 0.999 0.999

1000 0.50 0.934 0.943 0.923 1000 0.50 1.000 1.000 1.000

1000 0.75 0.777 0.779 0.780 1000 0.75 1.000 1.000 1.000
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