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AbstractAbstractAbstractAbstract

This paper considers testing for the ratio of two exponential means. We
propose a solution based on a Bayesian decision rule to this problem in
which no subjective input is considered. The criterion for testing is the
Bayesian reference criterion (Bernardo, 1999). We derive the Bayesian
reference criterion for testing the ratio of two exponential means.
Simulation study and a real data example are provided.
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1. Introduction1. Introduction1. Introduction1. Introduction

Consider two independent random samples (X 11 ,⋯ ,X 1n ) and

(X 21 ,⋯ ,X 2n ) , where the X 1 j are independent and identically exponentially

distributed ε (λ) with mean λ and the X 2 j are independent and identically

exponentially distributed ε (ηλ) with mean ηλ. The parameter of interest is

η, the ratio of two exponential means. Our goal of this paper is to test the

null hypothesis H 1:η = η 0 versus the alternative H 2:η≠η 0 .

In Bayesian model selection or hypothesis testing problems, the Bayes factor
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under proper priors has been shown very successful. However, limited information

and time constraints often require the use of noninformative priors. Since

noninformative priors such as Jeffreys' priors or reference priors (Berger and

Bernardo, 1989, 1992) are typically improper so that such priors are only defined

up to arbitrary constants which affects the values of Bayes factors. To avoid this

difficulty several alternative approaches have been proposed: the Schwarz (1978)

asymptotic approximation, namely the Bayesian information criterion; the fractional

Bayes factor and the intrinsic Bayes factor proposed by O'Hagan (1995) and

Berger and Pericchi (1996). For criticisms and comparisons of these methods

relevant references include Berger and Pericchi (1997), De Santis and Spezzaferri

(1999), and O'Hagan (1995,1997).

On the other hand, Bernardo(1999) and Bernardo and Rueda (2002) introduced a

new Bayesian hypothesis testing as decision problem. They justified the choice of

a particular continuous invariant difference loss function, the intrinsic discrepancy

loss. This is combined with reference analysis to propose an attractive Bayesian

solution to the problem of hypothesis testing, defined as the problem of deciding

whether or not available data are statistically compatible with the hypothesis that

the parameters of the model belong to some subset of the parameter space. That

is, to decide whether or not some data xxxx are compatible with the null

hypothesis H 0:θ = θ 0 , they computes the reference posterior expectation of

the intrinsic discrepancy loss which could be loss if the null hypothesis were

used. This provides an attractive non-negative test function which is invariant

under reparametrization. The corresponding Bayes decision rule, the Bayesian

reference creterion (BRC), indicates that the null should only be rejected if

the posterior expected loss of information from using the null is too large.

The comparison of two exponential distributions is often important in statistical

analyses of lifetime data. In particular, the problem of estimating the ratio of

exponential means is one-to-one problem of estimating the reliability of a

exponential stress-strength system. The estimation of ratio of two exponential

means was given by Lawless (1982) and Cox and Reid (1987). Mukerjee and Dey

(1993) derived the matching prior. Using the orthogonal parametrization, Datta and

Ghosh (1995) derived the reference prior. Recently, Kim and Chung (2004)

proposed the Bayesian reference criterion for testing the equality of two

exponential parameters.

In this paper, we construct an objective Bayesian testing procedure based on the

BRC. The outline of the remaining sections are as follows. In Section 2, a brief

summary of the BRC is given and we derive expression for the BRC to solve our

problem. In Section 3, we provide an example and simulation study for illustration.
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2. Bayesian Hypothesis Testing2. Bayesian Hypothesis Testing2. Bayesian Hypothesis Testing2. Bayesian Hypothesis Testing

2.1 Bayesian Reference Criterion2.1 Bayesian Reference Criterion2.1 Bayesian Reference Criterion2.1 Bayesian Reference Criterion

Let {p(xxxx∣θ,ω,θ∈Θ,ω∈Ω)}, be a statistical model which is assumed to
have been generated some data xxxx∈X , and consider a precise value θ=θ 0

among those which remain possible after xxxx has been observed. Here θ is

considered to be the vector of interest and ω be the vector of nuisance

parameters.

To decide whether or not the precise value θ0 may be used as a proxy for

the unknown value of θ,

(i) compute the intrinsic discrepancy δ(θ 0,θ,ω);

δ(θ 0,θ,ω)=min ω 0∈Ω δ {p(xxxx∣θ,ω),p (xxxx∣θ 0,ω 0)} ,

where δ{p 1( xxxx),p 2( xxxx)}= min {⌠⌡p 1( xxxx) log p 1( xxxx)p 2( xxxx)
dx, ⌠⌡p 2( xxxx) log

p 2( xxxx)

p 1( xxxx)
dx} .

Intrinsic discrepancy δ(θ 0,θ,ω) between p(xxxx∣θ,ω) and p(xxxx∣θ 0,ω 0)
is the intrinsic discrepancy between the assumed probability density

p(xxxx∣θ,ω) and its closest approximation with θ0.
(ii) derive the corresponding reference posterior expectation d(θ 0, xxxx),

d (θ 0, xxxx ) =
⌠
⌡Θ
⌠
⌡Ω
δ(θ 0,θ,ω )π δ(θ,ω∣ xxxx )dθdω,

where π δ(θ,ω∣ xxxx) is the posterior distribution which corresponds to
the δ-reference prior π δ(θ,ω) and state this number as a measure

of evidence against the null hypothesis H 0:θ = θ 0 .

(iii) If a formal decision is required, reject the null if, and only if,

d(θ 0, xxxx)> d
* , for some context dependent d * . The values d *≈1.0 (no

evidence against the null), d *≈2.5 (mild evidence against the null)

and d *≈5.0 (significant evidence against the null) may conveniently

be used for scientific communication.
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2.2 Bayesian Reference Criterion for Testing the Ratio of Two Exponential2.2 Bayesian Reference Criterion for Testing the Ratio of Two Exponential2.2 Bayesian Reference Criterion for Testing the Ratio of Two Exponential2.2 Bayesian Reference Criterion for Testing the Ratio of Two Exponential

MeansMeansMeansMeans

We consider two independent random samples (X 11 ,⋯ ,X 1n ) and

(X 21 ,⋯ ,X 2n ) , where the X 1 j are independent and identically exponentially

distributed ε (λ) with mean λ and the X 2 j are independent and identically

exponentially distributed ε (ηλ) with mean ηλ. Then the joint probability

distribution of X 11 ,⋯ ,X 1n and X 21 ,⋯ ,X 2n is

p (xxxx∣λ,η ) = λ - 2 n η - nexp { - n x 1λ -
n x 2
ηλ } , (1)

where xxxx = (x 11,⋯ ,x 1n,x 21,⋯ ,x 2n) , x 1 = ∑
n

j = 1
x 1 j/n , x 2 = ∑

n

j = 1
x 2 j/n , λ>0 and

η>0. The parameter η is the ratio of two exponential means. The reference

prior (Datta and Ghosh, 1995) for η is given by

π(λ,η )∝η - 1λ - 1. (2)

We want to test whether or not the value η = η 0 is compatible with those

observations. To derive the BRC, firstly, we compute the directed logarithmic

divergence of p( xxxx∣η 0,λ 0) from p( xxxx∣η,λ), k(η 0 ,λ 0∣η,λ), is given by

k (η 0 ,λ 0∣η,λ) = ⌠⌡
∞

0
⋯ ⌠⌡

∞

0
p(xxxx∣η,λ) log p(xxxx∣η,λ)

p(xxxx∣η 0,λ 0) dx 11⋯dx 2n

= n[ log η 0λ
2
0

ηλ 2
+
λ
λ 0
+
ηλ
η 0λ 0

-2n].

This is minimized when λ 0=
λ(η 0+η)

2η 0
, to yield

inf
λ∈R + k (η 0 ,λ 0∣η,λ) = n[ log (η 0+η)

2

4η 0η
].

Also the directed logarithmic divergence of p( xxxx∣η,λ) from p( xxxx∣η 0,λ 0),
k(η 0 ,λ 0∣η,λ), is given by
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k (η ,λ∣η 0,λ 0) = ⌠⌡
∞

0
⋯ ⌠⌡

∞

0
p(xxxx∣η 0,λ 0) log p(xxxx∣η 0,λ 0)

p(xxxx∣η,λ) dx 11⋯dx 2n
= n[ log ηλ

2

η 0λ
2
0

+
λ 0
λ
+
η 0λ 0
ηλ

-2n].

This is minimized when λ 0=
2ηλ
η 0+η

, to yield

inf
λ∈R + k (η ,λ∣η 0,λ 0) = n[ log (η 0+η)

2

4η 0η
].

Therefore the intrinsic discrepancy loss δ(η 0,η,λ) is given by

δ(η 0,η,λ) = min λ 0∈Λ δ {p(xxxx∣η,λ),p(xxxx∣η 0,λ 0)}

= n[ log (η 0+η)
2

4η 0η
]

= n[ log (1+θ)
2

4θ ],

(3)

where θ = η 0/η . Thus the δ(η 0,η,λ) only depends on the ratio θ = η 0/η .

Figure 1 represents the intrinsic loss function (3), as a function θ, for

several values of n . As one might expect, δ(η 0,η,λ) increases with θ<1

and θ>1.

Next we compute reference posterior of η when δ is the quantity of

interest. From (2) the reference prior for η is π(η,λ )∝η - 1λ - 1.
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<Figure 1> Intrinsic Discrepancy Loss as a function of θ = η 0/η

Moreover, the quantity δ is a piecewise invertible function of η. So the joint

reference prior when δ is the parameter of interest is

π δ(η,λ )∝η
- 1λ - 1 . (4)

From the likelihood function (1) and the reference prior (4), the joint posterior for

η and λ is given by

π δ(η,λ∣ xxxx )∝λ - 2 n- 1η - n - 1exp{ - n x 1λ -
n x 2
ηλ } ,

where x 1 = ∑
n

j= 1
x 1 j/n and x 2 = ∑

n

j = 1
x 2 j/n . This posterior is proper if n≥1 .

Therefore the reference posterior expectation, test statistic, is

d (η 0, xxxx ) =
⌠
⌡

∞

0

⌠
⌡

∞

0
δ(η 0,η,λ )π δ(η,λ∣ xxxx )dηdλ

= n C ⌠⌡

∞

0
[ log (1+ θ)

2

4θ ]θ n - 1 (η 0 x 1+θ x 2 ) - 2ndθ,

where C = 2 2n - 1[η 0 x 1 x 2]
nΓ(n+ 1/2) /[ Γ(n )Γ ( 1/2 )] . The exact value of

test statistic can easily be found by one dimensional numerical integration.

3. Numerical Studies3. Numerical Studies3. Numerical Studies3. Numerical Studies

We consider the hypothesis testing problem for the ratio of exponential means

under the reference prior for several configurations, (η,λ) and n using BRC.

This is done numerically. For our simulation, we take λ = 1 .

To see the performance of tests by BRC for the hypothesis H 0:η = η 0

against H 1:η≠η 0 for fixed (η,λ) and n , we take 100,000 independent

random samples of XXXX from the model (1). In particular, six samples of sizes,

2, 5, 10, 20, 30 and 50 are taken. Table 1, 2 and 3 give correspondence

between the threshold value d * for test statistic d(η 0, xxxx), and type I error

probabilities, P[d>d *∣H 0]. Here threshold value takes over the range of
values from 1 to 9. For the cases presented in Table 1, 2, and 3, we see

that type I error probabilities are smaller as sample size increases. Note that

there is no anymore a one-to-one correspondence between d *-values and
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significance levels; indeed, our procedure recommends rejecting the null

whenever d>5, which implies type I error probabilities of 0,0029 0.0020,

0.0023, 0.0025, 0.0021 and 0.0026, when the sample size is 2, 5, 10, 20, 30

and 50 with Table 1, respectively.

<Table 1> Correspondence between the Threshold Value d * of the Test

Statistic, d (η = 0.1, xxxx ) and Type I Error Probabilities, P[d>d *∣H 0]
d * n = 2 n = 5 n = 10 n = 20 n = 30 n = 50

1
2
2.42
3
4
5
6
7
9

0.32784
0.08163
0.04888
0.02477
0.00849
0.00279
0.00109
0.00038
0.00000

0.31846
0.08068
0.04748
0.02379
0.00723
0.00256
0.00084
0.00030
0.00001

0.31714
0.08192
0.04830
0.02334
0.00757
0.00244
0.00080
0.00020
0.00003

0.31838
0.08216
0.04959
0.02465
0.00768
0.00251
0.00098
0.00029
0.00004

0.31773
0.08335
0.04992
0.02506
0.00852
0.00256
0.00098
0.00026
0.00005

0.31734
0.08164
0.04982
0.02490
0.00829
0.00257
0.00093
0.00027
0.00005

<Table 2> Correspondence between the Threshold Value d * of the Test

Statistic, d (η = 1.0, xxxx ) and Type I Error Probabilities, P[d>d *∣H 0]
d * n = 2 n = 5 n = 10 n = 20 n = 30 n = 50

1
2
2.42
3
4
5
6
7
9

0.32815
0.08144
0.04893
0.02501
0.00824
0.00311
0.00117
0.00026
0.00000

0.32167
0.08056
0.04798
0.02400
0.00754
0.00289
0.00082
0.00036
0.00005

0.31529
0.08161
0.04789
0.02456
0.00692
0.00236
0.00073
0.00032
0.00004

0.31824
0.08128
0.04877
0.02469
0.00825
0.00248
0.00077
0.00034
0.00003

0.32071
0.08120
0.04880
0.02467
0.00819
0.00261
0.00094
0.00028
0.00006

0.31640
0.08185
0.05056
0.02494
0.00825
0.00239
0.00104
0.00025
0.00004

<Table 3> Correspondence between the Threshold Value d * of the Test

Statistic, d (η = 10.0, xxxx ) and Type I Error Probabilities, P[d>d *∣H 0]
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d * n = 2 n = 5 n = 10 n = 20 n = 30 n = 50

1
2
2.42
3
4
5
6
7
9

0.32925
0.08119
0.04833
0.02490
0.00769
0.00305
0.00120
0.00040
0.00000

0.31983
0.08157
0.04736
0.02419
0.00731
0.00238
0.00088
0.00027
0.00004

0.32031
0.08094
0.04905
0.02395
0.00776
0.00232
0.00095
0.00036
0.00000

0.31831
0.08328
0.04906
0.02409
0.00752
0.00274
0.00083
0.00043
0.00007

0.31747
0.08086
0.04944
0.02500
0.00785
0.00261
0.00097
0.00033
0.00001

0.31799
0.08326
0.04998
0.02426
0.00782
0.00258
0.00089
0.00034
0.00002

Example 1Example 1Example 1Example 1. The following data, given by Lawless (1982), are failure times (in
minutes) for two types of electrical insulation in which the insulation was

subjected to an increasing voltage stress. The original dataset is assumed to have

two parameter exponential distributions. We subtracted from the data to the MLE

for the location parameter. Thus we may assume that the transformed data follow

one parameter exponential distributions heuristically. For the following data, Kim

and Kim (2000) derived the intrinsic priors for testing two exponential means with

the fractional Bayes factor.

Type A ( xxxx 1111) : 9.5, 58.4, 12.1, 126.3, 139.6, 63.0, 83.2, 85.8, 30.9, 16.3,

34.6

Type B ( xxxx 2222) : 200.8, 60.9, 67.5, 131.7, 3.2, 103.4, 22.0, 128.6, 16.6,

23.8, 30.2

The sample means are x 1= 55.0 (n 1= 11) and x 2= 65.7 (n 2= 11) .

We want to test H 1:η = 1 versus H 2:η≠1. The the reference posterior

expectation, test statistic, is d= 0.594 (< 1). Thus the BRC criterion suggests

that the null hypothesis, H 1:η = 1 , is accepted. Also the Bayes factor with

fractional prior for testing H 1:μ 1 = μ 2 versus H 1:μ 1≠μ 2 is B
I
21=0.280 (Kim

and Kim, 2000). Therefore the Bayes factor and the BRC criterion give the

same conclusion and we may conclude that there is little difference between

the two types of electrical insulation.
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