
Journal of the KoreanJournal of the KoreanJournal of the KoreanJournal of the Korean
Data & Information Science SocietyData & Information Science SocietyData & Information Science SocietyData & Information Science Society
2006, Vol. 17, No. 4, pp. 1329 13412006, Vol. 17, No. 4, pp. 1329 13412006, Vol. 17, No. 4, pp. 1329 13412006, Vol. 17, No. 4, pp. 1329 1341～～～～

Bayesian Model Selection in the Gamma PopulationsBayesian Model Selection in the Gamma PopulationsBayesian Model Selection in the Gamma PopulationsBayesian Model Selection in the Gamma Populations

Sang Gil KangSang Gil KangSang Gil KangSang Gil Kang1)1)1)1) Doo Young KangDoo Young KangDoo Young KangDoo Young Kang․․․․ 2)2)2)2)

AbstractAbstractAbstractAbstract

When X and Y have independent gamma distributions, we consider
the testing problem for two gamma means. We propose a solution
based on a Bayesian model selection procedure to this problem in
which no subjective input is considered. The reference prior is
derived. Using the derived reference prior, we compute the fractional
Bayes factor and the intrinsic Bayes factors. The posterior probability
of each model is used as a model selection tool. Simulation study and
a real data example are provided.
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1. Introduction1. Introduction1. Introduction1. Introduction

Consider two independent random samples (X 1 ,⋯ ,X n 1
) and (Y 1 ,⋯ ,Y n 2

) ,

where the X i are independent and identically gamma distributed with the

shape parameter ν and the mean μ x , and the Y i are independent and

identically gamma distributed with the shape parameter ν and the mean μ y .

Our goal of the analysis is to test the null hypotheses H 1:μ x = μ y versus the

alternative H 2:μ x≠μ y .

In a Bayesian setup, the testing problem is formulated as a model selection

problem in which we have the compare the model M 1:{f1( xxxx∣ θθθθ 1 ),π
N
1 ( θθθθ 1 )}
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to M 2:{f2( xxxx∣ θθθθ 2 ),π
N
2 ( θθθθ 2 )}. For a given prior P on {M 1,M 2}, the posterior

probability of M 1 is

P (M 1∣ xxxx ) =(1+ P (M 2 )

P (M 1 )
B 21)

- 1

,

where the factor

B 21=

⌠
⌡ f 2( xxxx∣ θθθθ 2 )π 2( θθθθ 2 )d θθθθ 2

⌠
⌡f 1( xxxx∣ θθθθ 1 )π 1( θθθθ 1 )d θθθθ 1

(1)

is known as the Bayes factor of M 2 and M 1 . This factor encapsulates all the

information that the data have about the posterior probability of M 1 . It can

also be defined as the ratio of posterior to prior odds.

Unfortunately, with improper priors, the Bayes factor (1) is defined up to a

multiplicative constant c 2/c 1 . To avoid this difficulty several alternative

approaches have been proposed. Spiegalhalter and Smith (1982) used the

device of imaginary training samples in the context of linear model

comparisons to choose the arbitrary constants. But the choice of imaginary

training sample depends on the models under comparison, and so, there is no

guarantee that the Bayes factor of Spiegalhalter and Smith (1982) is coherent

for multiple model comparisons. Berger and Pericchi (1996) introduced the

intrinsic Bayes factor using a data-splitting idea, which would eliminate the

arbitrariness of improper priors. O'Hagan (1995) proposed the fractional Bayes

factor. For removing the arbitrariness he used to a portion of the likelihood

with a so-called the fraction b. These approaches have shown to be quite

useful in many statistical areas (Kang, Kim and Lee, 2005, 2006).

A general review of the gamma distribution including several references to

applications in diverse fields is given by Johnson, Kotz and Balakrishnan (1994).

In particular, the gamma distribution has been suggested as the failure time

model, and also received considerable attention in the area of ecology and weather

analysis. For two sample gamma models, Shiue and Bain (1983) derived an

approximate F test for testing the equality of two means when the shape

parameters are equal. Shiue, Bain and Engelhardt (1988) extended the method

to the case where the shape parameters are unequal. Booth, Hobert and

Ohman (1999) proposed a bootstrap calibration method for inference

concerning the ratio of two means when the shape parameters are equal and

are in proportion. Simulation studies in Booth, Hobert and Ohman (1999)

suggest that intervals obtained by extending the method in Jensen (1986) and

those obtained by bootstrap calibration have similar performance in terms of
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length and coverage. Wong, Wu and Sun (2004) proposed a method based on

the modified signed log-likelihood ratio statistic for small sample inference

concerning the ratio of two means when the shape parameters are equal and

are unequal. They argued that the proposed method give extremely accurate

coverage in simulation studies, and is more direct and less computational

intensive than the calibrated bootstrap method (Booth, Hobert and Ohman,

1999).

Almost all the work mentioned above is the analysis based on the classical

point of view, there is a little work on this problem from the viewpoint of the

objective Bayesian framework. So we feel a strong necessity to develop objective

Bayesian testing procedure for the equality of two gamma means. For dealing this

problem, we use the fractional Bayes factor (O'Hagan, 1995) and the intrinsic

Bayes factor (Berger and Pericchi, 1996).

The outline of the remaining sections is as follows. In Section 2, we introduce

the Bayesian model selection based on the Bayes factor. In Section 3, for some

case, we derive the reference prior. Using the derived reference prior, we provide

Bayesian model selection procedure based on the fractional Bayes factor and

intrinsic Bayes factor for the testing for the equality of two gamma mean

parameters. In Section 4, simulation study and a real example are given.

2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors2. Intrinsic and Fractional Bayes Factors

Models M 1 , M 2 ,⋯ , M q are under consideration, with the data xxxx = (x 1,x 2,

⋯ ,x n ) having probability density function f i( xxxx∣ θθθθ i) under model M i,

i = 1 ,2 ,⋯ ,q . The parameter vectors θθθθ i are unknown. Let π i( θθθθ i) be the
prior distribution of model M i, and let p i be the prior probabilities of model

M i, i= 1,2,⋯ ,q . Then the posterior probability that the model M i is true is

P (M i∣ xxxx ) = ( ∑
q

j= 1

p j
p i

⋅B ji)
- 1

, (2)

where B ji is the Bayes factor of model M j to model M i defined by

B ji=

⌠
⌡ f j( xxxx∣ θθθθ j )π j( θθθθ j )d θθθθ j

⌠
⌡f i( xxxx∣ θθθθ i)π i( θθθθ i)d θθθθ i

=
m j( xxxx )

m i( xxxx )
. (3)

The B ji interpreted as the comparative support of the data for the model j

to i . The computation of B ji needs specification of the prior distribution
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π i( θθθθ i) and π j( θθθθ j) . Often in Bayesian analysis, one can use noninformative

priors πNi . Common choices are the uniform prior, the Jeffreys prior and the

reference prior. The noninformative prior πNi is typically improper. Hence the

use of noninformative prior πNi (⋅) in (3) causes the B ji to contain

unspecified constants. To solve this problem, Berger and Pericchi (1996)

proposed the intrinsic Bayes factor, and O'Hagan (1995) proposed the

fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a

training sample. Let xxxx( l) denote the part of the data to be so used and let

xxxx ( - l) be the remainder of the data, such that

0 <m Ni ( xxxx ( l)) < ∞, i= 1,⋯ ,q . (4)

In view (4), the posteriors πNi (θ i∣xxxx( l)) are well defined. Now, consider the
Bayes factor, B ji( l) , for the rest of the data xxxx ( - l) , using π

N
i (θ i∣xxxx( l)) as

the priors:

B ji( l)=

⌠
⌡Θ j
f(xxxx (- l)∣θ j, xxxx ( l))πNj (θ j∣ xxxx ( l))dθ j

⌠
⌡Θ i
f(xxxx (- l)∣θ i, xxxx( l))πNi (θ i∣ xxxx( l))dθ i

=B Nji⋅B Nij( xxxx ( l)) (5)

where

B ji=B
N
ji ( xxxx ) =

m N
j ( xxxx )

m N
i ( xxxx )

and B Nij( xxxx ( l)) =
m Ni ( xxxx ( l))

m Nj ( xxxx ( l))

are the Bayes factors that would be obtained for the full data xxxx and training

samples xxxx( l), respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to

compute BNij( xxxx( l)) . Then, an average over all the possible minimal training

samples contained in the sample is computed. Thus the arithmetic intrinsic

Bayes factor (AIBF) of M j to M i is

B AIji = B
N
ji⋅ 1

L ∑
L

l= 1
B Nij( xxxx ( l) ). (6)

where L is the number of all possible minimal training samples. Also the

median intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of M j to
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M i is

B MIji =B
N
ji⋅ME[BNij( xxxx ( l))], (7)

where ME indicates the median, here to be taken over all the training sample

Bayes factors. So we can also calculate the posterior probability of M i using

(2), where B ji is replaced by B
A I
ji and B

MI
ji from (6) and (7).

The fractional Bayes factor (O'Hagan, 1995) is based on a similar intuition to

that behind the intrinsic Bayes factor but, instead of using part of the data to

turn noninformative priors into proper priors, it uses a fraction, b , of each

likelihood function, L ( θθθθ i )= f i( xxxx∣ θθθθ i) , with the remaining 1 - b fraction of

the likelihood used for model discrimination. Then the fractional Bayes factor

(FBF) of model M j versus model M i is

B Fji= B
N
ji⋅

⌠
⌡L

b( xxxx∣ θθθθ i)π
N
i ( θθθθ i)d θθθθ i

⌠
⌡L
b( xxxx∣ θθθθ j)π

N
j ( θθθθ j)d θθθθ j

= B Nji⋅ m bi ( xxxx )

m bj ( xxxx )
,

and f i( xxxx∣ θθθθ i) is the likelihood function and b specifies a fraction of the

likelihood which is to be used as a prior density. He proposed three ways for

the choice of the fraction b. One common choice of  is b = m /n , where m is

the size of the minimal training sample, assuming that this number is uniquely

defined. (see O'Hagan, 1995, 1997, and the discussion by Berger and Mortera

of O'Hagan, 1995).

3. Bayesian Model Selection Procedures3. Bayesian Model Selection Procedures3. Bayesian Model Selection Procedures3. Bayesian Model Selection Procedures

Let X 1 ,⋯ ,X n 1
be independent random sample from gamma distribution

G ( μ x,ν ) with the shape parameter ν and the mean μ x and Y 1 ,⋯ ,Y n 2
be

independent random sample from gamma distribution G ( μ y,ν ) with the shape

parameter ν and the mean μ y . We are interest to testing the hypotheses

H 1:μ x = μ y vs. H 2:μ x≠μ y .

The two default models being compared are

M 1: f( xxxx , yyyy∣ θθθθ 1 )=G ( xxxx∣μ,ν)G ( yyyy∣μ,ν), πN1 ( θθθθ 1 )
and

M 2: f( xxxx , yyyy∣ θθθθ 2 )=G ( xxxx∣μ x,ν)G ( yyyy∣μ y,ν) , πN2 ( θθθθ 2 ),
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where xxxx = ( x 1 ,⋯ ,x n 1 ) , yyyy = ( y 1 ,⋯ ,y n 2 ) , θθθθ 1 = (μ , ν ) and θθθθ 2= (μ x , μ y ,ν ) .

3.1 Bayesian Model Selection based on the Fractional Bayes Factor3.1 Bayesian Model Selection based on the Fractional Bayes Factor3.1 Bayesian Model Selection based on the Fractional Bayes Factor3.1 Bayesian Model Selection based on the Fractional Bayes Factor

Under the Model M 1 , the reference prior for μ ( ≡ μ x = μ y ) and ν is

π N1 ( μ , ν ) = μ
- 1[ ψ '( ν ) - ν - 1]

1
2 ,

where ψ'(⋅) is the trigamma function. This reference prior is derived by
Liseo (1993). And the likelihood function under M 1 is

L ( μ,ν∣ xxxx , yyyy ) =
μ
- ( n 1+ n 2 )νν

( n 1+ n 2 )ν

Γ (ν)
n 1+ n 2

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

ν - 1exp { -
ν
μ
[ ∑
n 1

i= 1
x i+ ∑

n 2

i= 1
y i] }.

Then the element of fractional Bayes factor under M 1 is given by

m b
1 ( xxxx , yyyy ) =

⌠
⌡

∞

0

⌠
⌡

∞

0
L b (μ , ν∣ xxxx , yyyy )π N1 ( μ, ν )dμdν

= ⌠⌡

∞

0

Γ (nbν )
Γ ( ν ) nb

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

b ( ν - 1 )

[ ∑
n 1

i= 1
x i+ ∑

n 2

i= 1
y i]

nbν

b - nb ν[ ψ '( ν ) - ν - 1]
1
2 dν,

where n = n 1+ n 2 .

For the M 2 , the reference prior for μ x , μ y and ν is

π N2 ( μ x , μ y, ν ) = μ
- 1
x μ

- 1
y [ ψ '( ν ) - ν

- 1]
1
2 .

The derivation of the reference prior for μ x , μ y and ν is given in Appendix.

The likelihood function under M 2 is

L ( μ x,μ y,ν∣ xxxx , yyyy ) =
μ
- n 1 ν
x μ

- n 2 ν
y ν

( n 1+ n 2 )ν

Γ (ν )
n 1+ n 2

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

ν - 1

× exp {-
ν
μ x
∑
n 1

i= 1
x i} exp {-

ν
μ y
∑
n 2

i= 1
y i}.

Thus the element of fractional Bayes factor under M 2 gives as follows.
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m b
2 ( xxxx , yyyy ) =

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
L b ( μ x , μ y, ν∣ xxxx , yyyy )π N2 ( μ x , μ y, ν )dμ xdμ ydν

= ⌠⌡

∞

0

Γ(n 1bν)Γ (n 2bμ)

b nbνΓ(ν) nb

[ ∏
n 1

i= 1
x i ∏

n 2

i=1
y i]

b ( ν - 1 )

[∑
n 1

i= 1
x i]

n 1bν[∑
n 2

i= 1
y i]

n 2bν
[ψ '( ν )- ν - 1]

1
2 dν,

where n = n 1+ n 2 . Therefore the B
N
21 is given by

B N21 =
S 2 ( xxxx , yyyy )

S 1 ( xxxx , yyyy )
, (8)

where

S 1( xxxx , yyyy ) =
⌠
⌡

∞

0

Γ(nν)
Γ (ν ) n

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

ν - 1

[ ∑
n 1

i= 1
x i+ ∑

n 2

i= 1
y i]

nν

[ψ '( ν )- ν - 1]
1
2 dν,

and

S 2( xxxx, yyyy ) =
⌠
⌡

∞

0

Γ(n 1ν)Γ(n 2μ)

Γ(ν) n

[ ∏
n 1

i=1
x i ∏

n 2

i=1
y i]

( ν - 1 )

[∑
n 1

i=1
x i]

n 1ν[∑
n 2

i=1
y i]

n 2ν
[ψ '( ν)- ν - 1]

1
2 dν.

And also

m b1 ( xxxx , yyyy )

m b2 ( xxxx , yyyy )
=
S 1 ( xxxx , yyyy ;b )

S 2 ( xxxx , yyyy ;b )
,

where

S 1( xxxx , yyyy ;b ) =
⌠
⌡

∞

0

Γ(nbν)
Γ (ν ) nb

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

ν - 1

[∑
n 1

i= 1
x i+ ∑

n 2

i= 1
y i]

nbν

b - nb ν[ψ '( ν )- ν - 1]
1
2 dν,

and

S 2( xxxx, yyyy ;b ) =
⌠
⌡

∞

0

Γ(n 1bν)Γ(n 2bμ)

Γ(ν) nb

[ ∏
n 1

i=1
x i ∏

n 2

i=1
y i]

b ( ν - 1)

[∑
n 1

i=1
x i]

n 1bν[∑
n 2

i=1
y i]

n 2bν
b - nb ν[ψ '(ν)- ν - 1]

1
2 dν.

Thus the fractional Bayes factor of M 2 versus M 1 is given by

B F21 =
S 2 ( xxxx , yyyy ;b )

S 1 ( xxxx , yyyy ;b )
⋅ S 1 ( xxxx , yyyy )

S 2 ( xxxx , yyyy )
. (9)

Note that the calculation of the fractional Bayes factor of M 2 versus M 1
requires an one dimensional integration.
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3.2 Bayesian Model Selection based on the Intrinsic Bayes Factor3.2 Bayesian Model Selection based on the Intrinsic Bayes Factor3.2 Bayesian Model Selection based on the Intrinsic Bayes Factor3.2 Bayesian Model Selection based on the Intrinsic Bayes Factor

The element BN21 , (8), of the intrinsic Bayes factor is computed in the

fractional Bayes factor. So using minimal training sample, we only calculate

the marginal densities under M 1 and M 2 , respectively. The marginal density

of ( X i ,X j , Y k ,Y l ) is finite for all 1≤ i< j≤n 1,1≤k < l≤n 2 under each

hypothesis (see Liseo, 1993). Thus we conclude that any training sample of

size four is a minimal training sample.

The marginal densities m N
1 (x i ,x j ,y k ,y l) under M 1 is given by

m N1 (x i ,x j,y k,y l) =
⌠
⌡

∞

0

⌠
⌡

∞

0
f(x i,x j,y k,y l∣μ,ν)πN1 ( μ,ν)dμdν

= ⌠⌡

∞

0

Γ(4ν)

Γ(ν) 4
[x ix jy ky l]

ν - 1

[x i+x j+ y k+ y l]
4ν [ψ '(ν )- ν

- 1]
1
2 dν

≡ T 1(x i ,x j,y k,y l),

where 1≤ i< j≤n 1,1≤k < l≤n 2 . And the marginal density m
N
2 (x i ,x j ,y k ,y l)

under M 2 is given by

m N2 (x i ,x j,y k,y l)

= ⌠⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
f(x i,x j,y k,y l∣μ x,μ y,ν)πN2 (μ x ,μ y,ν)dμ xdμ ydν

= ⌠⌡

∞

0

Γ(2ν)Γ(2μ)

Γ(ν) 4
[x ix jy ky l]

( ν - 1)

[x i+x j]
2ν[y k+y l]

2ν [ψ '(ν)- ν
- 1]

1
2 dν

≡ T 2(x i ,x j,y k,y l).

Therefore the AIBF of M 2 versus M 1 is given by

B AI21 =
S 2 ( xxxx , yyyy )

S 1 ( xxxx , yyyy )
⋅ [ 1L ∑i, j∑k , l

T 1(x i,x j,y k,y l)

T 2 (x i ,x j,y k,y l) ] . (10)

where L = n 1 (n 1- 1 )n 2 (n 2-1 )/4 . And the MIBF of M 2 versus M 1 is given

by

B MI21 =
S 2 ( xxxx , yyyy )

S 1 ( xxxx , yyyy )
⋅ME [ T 1 (x i ,x j,y k,y l)T 2 (x i ,x j,y k,y l) ] . (11)

Note that the calculations of the AIBF and MIBF of M 2 versus M 1 require an

one dimensional integration. In Section 4, we investigate our model selection

procedures.
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4. Numerical Studies4. Numerical Studies4. Numerical Studies4. Numerical Studies

Example 1Example 1Example 1Example 1.... To investigate the Bayesian model selection procedures, we

examine the cases when ( μ x , μ y ) = (1 ,1 ), ( 1 ,3 ), ( 1 ,5 ) , ν = 0 .5 , 1 ,3 and

( n 1 ,n 2 ) = (10,10), (10,20), (20,10), (20,20). The posterior probabilities of

M 1 being true are computed assuming equal prior probabilities. The Table 1

shows the results of the averages and the standard deviations in parentheses

of posterior probabilities for each case based on 200 replications.

From the Table 1, the fractional Bayes factor and the intrinsic Bayes factor give

fairly reasonable answers. Also for moderate sample sizes, the fractional Bayes

factor and intrinsic Bayes factor give very similar results.

Example 2Example 2Example 2Example 2.... Crow (1977) considered hail data from a cloud-seeding experiment
conducted by the National Center for Atmospheric Research. The natural

precipitation in a specified area was measured from a number of randomly

selected storms, and the precipitation from the remaining storms in the area,

which were seeded, was also measured. In one experiment, the hail mass was

measured by hail/rail separators from 16 nonseeded days and 17 seeded days. The

ratio of the mean hail mass under seeding and nonseeding was of interest, and an

interval estimate of this ratio was desired in order to assess the possible effect of

cloud seeding. Crow (1977) considered a gamma model for the data. For this

experiment, we have n 1= 16, x = 13.366,∑ log x i= 13.803 and n 2 = 17 ,

y= 13.249,∑ log y i=20.637 . Shiue and Bain (1983) reported the 90%

confidence interval for μ y/μ x is (0.376, 2.573) or equivalently the 90%

confidence interval for μ x/μ y is (0.39, 2.66). The 90% confidence interval

based on the modified signed log-likelihood ratio method (Wong, Wu and Sun,

2004) is (0.4, 2.64).

The value of fractional Bayes factor of M 2 versus M 1 is B
F
21=0.206 . We

assume that the prior probabilities are equal. Then the posterior probability

for M 1 is 0.829. Thus there are strong evidence for M 1 in terms of the

posterior probability.
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<Table 1> The averages and the standard deviations in parentheses of

posterior probabilities

ν ( μ x ,μ y ) (n 1 ,n 2 ) P
F(M 1∣ xxxx, yyyy) P AI(M 1∣ xxxx, yyyy) PMI(M 1∣ xxxx, yyyy)

0.5 1, 1 10,10
10,20
20,10
20,20

0.666 (0.151)
0.737 (0.126)
0.743 (0.125)
0.759 (0.119)

0.671 (0.161)
0.729 (0.134)
0.734 (0.130)
0.765 (0.122)

0.695 (0.154)
0.750 (0.130)
0.757 (0.124)
0.785 (0.119)

1, 3 10,10
10,20
20,10
20,20

0.469 (0.240)
0.430 (0.247)
0.428 (0.280)
0.373 (0.269)

0.468 (0.249)
0.415 (0.245)
0.413 (0.282)
0.373 (0.273)

0.499 (0.245)
0.445 (0.246)
0.439 (0.285)
0.397 (0.278)

1, 5 10,10
10,20
20,10
20,20

0.288 (0.228)
0.260 (0.214)
0.182 (0.221)
0.116 (0.180)

0.280 (0.231)
0.250 (0.212)
0.171 (0.217)
0.114 (0.180)

0.312 (0.237)
0.280 (0.220)
0.188 (0.227)
0.126 (0.192)

1.0 1, 1 10,10
10,20
20,10
20,20

0.665 (0.153)
0.717 (0.133)
0.712 (0.151)
0.750 (0.107)

0.674 (0.161)
0.713 (0.137)
0.709 (0.155)
0.762 (0.106)

0.685 (0.158)
0.721 (0.135)
0.717 (0.153)
0.768 (0.105)

1, 3 10,10
10,20
20,10
20,20

0.301 (0.247)
0.256 (0.229)
0.230 (0.245)
0.131 (0.189)

0.298 (0.253)
0.249 (0.228)
0.221 (0.243)
0.131 (0.193)

0.315 (0.253)
0.262 (0.229)
0.231 (0.247)
0.138 (0.196)

1, 5 10,10
10,20
20,10
20,20

0.108 (0.154)
0.058 (0.100)
0.036 (0.089)
0.012 (0.044)

0.104 (0.155)
0.055 (0.099)
0.033 (0.086)
0.012 (0.043)

0.117 (0.160)
0.063 (0.106)
0.037 (0.089)
0.013 (0.046)

3.0 1, 1 10,10
10,20
20,10
20,20

0.684 (0.117)
0.736 (0.121)
0.733 (0.129)
0.748 (0.129)

0.701 (0.122)
0.741 (0.123)
0.738 (0.131)
0.765 (0.129)

0.691 (0.122)
0.732 (0.124)
0.729 (0.132)
0.756 (0.130)

1, 3 10,10
10,20
20,10
20,20

0.061 (0.098)
0.018 (0.041)
0.015 (0.038)
0.002 (0.008)

0.059 (0.100)
0.017 (0.040)
0.014 (0.037)
0.002 (0.008)

0.062 (0.100)
0.018 (0.040)
0.014 (0.036)
0.002 (0.008)

1, 5 10,10
10,20
20,10
20,20

0.003 (0.007)
0.000 (0.001)
0.000 (0.000)
0.000 (0.000)

0.002 (0.006)
0.000 (0.001)
0.000 (0.000)
0.000 (0.000)

0.003 (0.007)
0.000 (0.001)
0.000 (0.000)
0.000 (0.000)
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Appendix.Appendix.Appendix.Appendix. Derivation of the Reference prior

Reference priors introduced by Bernardo (1979), and extended further by Berger

and Bernardo (1992) have become very popular over the years for the development

of noninformative priors. In this Appendix, we derive the reference priors for

different groups of ordering of ( μ x , μ y, ν ) .

Under M 2 , the joint density is given by

f ( xxxx , yyyy∣ μ x,μ y, ν ) = μ
- n 1 ν
x μ

- n 2 ν
y ν

( n 1+ n 2 )ν

Γ (ν)
n 1+ n 2

[ ∏
n 1

i= 1
x i ∏

n 2

i= 1
y i]

ν - 1

× exp {-
ν
μ x
∑
n 1

i= 1
x i} exp {-

ν
μ y
∑
n 2

i= 1
y i}.

(12)

Based on (12), the Fisher information matrix is given by

IIII=













n 1ν

μ 2x
0 0

0
n 2ν

μ 2y
0

0 0 (n 1+ n 2 )[ψ '( ν ) - ν
- 1]

,

where ψ'(⋅) is the trigamma function. From the above Fisher information

matrix IIII , μ x , μ y and ν are mutually orthogonal in the sense of Cox and

Reid(1987). Then due to the orthogonality of the parameters, following Datta

and Ghosh (1995), choosing rectangular compacts for each μ x , μ y and ν , the

reference priors are given by as follows.

For the gamma populations (12), the reference prior distributions for group of

ordering of {(μ x ,μ y),ν } is

 ∝
 

  ′   




For group of ordering of {μ x,μ y,ν } and {μ y,μ x,ν } , the reference prior is

π R2 ( μ x , μ y, ν ) ∝ μ - 1x μ
- 1
y [ ψ '( ν ) - ν

- 1]
1
2 .

So we know that the two group reference prior and the one-at-a-time reference

prior are the same.
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