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AbstractAbstractAbstractAbstract

In this paper, we consider the simultaneous estimation problem for the
normal means. We set up the model structure using the several different
distributions of the errors for observing their effects of model perturbation
for the error terms in obtaining the empirical Bayes and hierarchical
Bayes estimators. We compare the performance of those estimators under
model perturbation based on a simulation study.
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1. Introduction1. Introduction1. Introduction1. Introduction

Empirical and hierarchical Bayes methods are useful in statistics, especially in

the context of simultaneous estimation of several parameters. For example,

agencies of the Federal Government have been involved in obtaining estimates of

per capita income, unemployment rates, crop yields and so forth simultaneously for

several state and local government areas. In such situations, quite often estimates

of certain area means, or simultaneous estimates of several area means can be

improved by incorporating information from similar neighboring areas.

Examples of this type are especially suitable for empirical Bayes (EB) analysis.

An EB scenario is one in which known relationships among the coordinates of a

parameter vector, say θθθθ= (θ 1,⋯,θ n) T allow use of the data to estimate some
features of the prior distribution. For example, one may have reason to

believe that the θi's are iid from a prior π 0(λ), where π0 is structurally known
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except possibly for some unknown parameter λ. A parametric EB procedure is

one where λ is estimated from the marginal distribution of only the

observations. See Morris(1981, 1983), Berger(1985), Casellar(1985), Kass and

Steffey(1989) among others.

Closely related to the EB procedure is the hierarchical Bayes (HB) procedure

which models the prior distribution in several stages. In the first stage, conditional

on Λ = λ, θi's are iid with a prior π 0(λ). In the second stage, a prior

distribution (often improper) is assigned to Λ. This is an example of a two

stage prior. The idea can be generalized to multistage priors. See Lindley and

Smith (1972), Berger(1985), Ghosh(1992), among others.

It is apparent that both the EB and the HB procedures recognize the uncertainty

in the prior information, but whereas the HB procedure models the uncertainty in

the prior information by assigning a distribution (often noninformative or improper)

to the prior parameters (usually called hyperparameters), the EB procedure

attempts to estimate the unknown hyperparameters, typically by some classical

methods like the method of moments, method of maximum likelihood, etc., and use

the resulting estimated priors for inferential purposes. It turns out that the two

methods can quite often lead to comparable results, especially in the context of

point estimation.

The outline of the remaining sections is as follows. In Section 2 of this paper,

we summarize the methods for finding the empirical and hierarchical Bayes

estimators for the normal means. In Section 3, we set up the model structure

using the several different distributions of the errors for observing their effects of

model perturbation for the error terms in obtaining the EB and HB estimators. In

Section 4, we provide a numerical example. Based on a simulation study, we

compare the performance of EB and HB estimators under model perturbation.

2. Bayesian Estimation of the Normal Means2. Bayesian Estimation of the Normal Means2. Bayesian Estimation of the Normal Means2. Bayesian Estimation of the Normal Means

First we review the EB and HB procedures for estimating the multivariate

normal mean. We consider the following model.

. Conditional onⅠ θ 1,⋯, θ m, let X 1 ,⋯ , X m be independent with

X i∼N(θ i, σ
2), i = 1 , ⋯ , m , σ 2 ( > 0 ) being known.

. TheⅡ θi's have independent N (μ, A ), i = 1 , ⋯ , m , priors.

Let write θθθθ= (θ 1,⋯, θm) T, XXXX = (X 1 ,⋯ , X m) T and xxxx=(x 1,⋯,. xm)T.

The posterior distribution of θθθθ given XXXX= xxxx is then

N( (1-B) xxxx+B μμμμ,(1-B) IIII m), where B = σ 2/ (σ 2+A). Accordingly, the Bayes
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estimator of θθθθ is given by

θθθθ̂ B=E( θθθθ| XXXX= xxxx)= (1-B) xxxx+B μμμμ (2.1)

In an EB or a HB scenario, some or all of the prior parameters are unknown.

In an EB setup, these parameters are estimated from the marginal distribution of

XXXX which in this case is N( μμμμ,B
-1 IIII m). A HB procedure, on the other hand,

models the uncertainty of the unknown prior parameters by assigning

distributions to them. Such distributions are often called hyperpriors. We shall

consider the following case.

We assume both μ (real) and A to be unknown. Recall that marginally

XXXX∼N (μ 1111 m, B -1 IIII m), where B = σ 2/ (σ 2+A). Hence, ( X, ∑
m

i=1
(X i - X )

2) is
complete sufficient, so that the UMVUE's of μ and B are given respectively

by X and σ
2(m-3) / ∑

m

i=1
(X i - X)

2
. Substituting these estimators of μ and B

in (2.1), the EB estimator of θθθθ is given by

θθθθ̂̂̂̂
EB
=





1 -

σ
2
(m-3)

∑
m

i=1
(X i - X )

2






XXXX+

σ
2
(m-3)

∑
m

i=1
(X i - X )

2

X 1111 m

= XXXX-
σ
2
(m-3)

∑
m

i=1
(X i - X )

2

( XXXX- X 1111 m) (2.2)

This modification of the James-Stein estimator was proposed by Lindley(1962).

Whereas, the original James-Stein estimator shrinks XXXX towards a specified
point, the modified estimator given (2.2) shrinks XXXX towards a hyperplane

spanned by 1111m
. Additionally, the estimator θθθθ̂̂̂̂EB is known to dominate XXXX for

m ≥ 4 .
We now proceed to find the HB estimator of θθθθ. Consider the model where

(i) conditional on θθθθ, μ and A, XXXX∼N ( θθθθ, σ 2 IIII m); (ii) conditional on μ and A,

θ i∼N (μ, A ), i = 1 , ⋯ , m ; (iii) marginally μ and A are independently

distributed with μ uniform on (-∞ , ∞), and A has uniform improper pdf on

(0 , ∞). Customarily, such a prior on μ is widely accepted as a reasonable

objective prior. Then the joint (improper) pdf of XXXX, θθθθ, μ and A is given by



Dal Ho Kim Seung Cheol Han⋅1012

f( xxxx, θθθθ, μ,A) ∝exp[- 1

2σ 2
|| xxxx- θθθθ|| 2]

×A
-
1
2
m

exp[- 12A || θθθθ-μ 1111 m||
2]

(2.3)

Now integrating with respect to μ , it follows from (2.3) that the joint

(improper) pdf of XXXX, θθθθ, and A is

f ( xxxx , θθθθ,A ) ∝ A
-
m - 1
2 exp [- 1

2σ 2 ( θθθθ -
1

σ 2
EEEE - 1xxxx )

T

( θθθθ - 1σ 2 EEEE
- 1xxxx )

+
1

σ 2
xxxx TTTTxxxx -

1

σ 4
xxxx TEEEE - 1xxxx ]

where EEEE - 1 = σ 2(1-B) IIII m+σ
2Bm - 1JJJJ m . Hence, conditional on xxxx and A,

θθθθ ∝ N[ (1-B) xxxx+B x1111m, σ2{ (1-B) IIIIm+ Bm JJJJ m}] (2.4)

Also, integrating with respect to θθθθ in (2.4), one gets the joint pdf of xxxx and

A given by

f ( xxxx , A ) ∝ (σ2+A)
-
m-1
2 exp[- 1

2(σ2+A)
∑
m

i=1
(x i - x )

2] (2.5)

Since B =
σ2

σ2+A
, it follows from (2.5) that the joint pdf of XXXX and B is given

by

f (xxxx , B ) ∝ B
m-5
2 exp[- B2σ2 ∑

m

i=1
(x i - x )

2] (2.6)

where this HB approach was first proposed by Strawderman (1971).

It follows from (2.6) that

E (B |xxxx ) = ⌠⌡

1

0
B
m-3
2 exp[- B2σ2 ∑

m

i=1
(x i - x )

2]dB

÷ ⌠⌡

1

0
B
m -5
2 exp[- B2σ 2 ∑

m

i=1
(x i - x )

2]dB (2.7)

E (B2|xxxx ) = ⌠⌡

1

0
B
m-1
2 exp[- B2σ2 ∑

m

i=1
(x i - x )

2]dB
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÷ ⌠⌡

1

0
B
m -5
2 exp[- B2σ 2 ∑

m

i=1
(x i - x )

2]dB (2.8)

One can obtain V(B|xxxx) from (2.7) and (2.8), and use to obtain the HB

estimator E(θ|xxxx) and its variance V(θ|xxxx)

θ̂ HB=E(θ|xxxx) = xxxx-E(B|xxxx )(xxxx- x1111m) (2.9)

V(θ|xxxx) =V[E(θ|B,xxxx)|xxxx]+E[V(θ|B,xxxx)|xxxx]
=V (B |xxxx )(xxxx- x 1111 m)(xxxx- x 1111 m)

T

+σ2IIIIm-σ
2E (B |xxxx )( IIII m- 1n JJJJ m) (2.10)

3. Model Perturbation3. Model Perturbation3. Model Perturbation3. Model Perturbation

Our interest is to find the EB and HB procedures for estimating the multivariate

normal mean. We consider the following hierarchical model:

.Ⅰ
Y
i
|θ

i
∼
iid
N(θ

i
, σ
2

)
, i = 1 ,⋯ ,m

.Ⅱ
θ
i
|A∼

iid
N(0,A)

, i = 1 ,⋯ ,m
In other words, our model can be rewritten as

Y i = θ i+ e i, i = 1 ,⋯ ,m (3.1)

where
e
i
∼
iid
N(0, σ

2

)
.

Here, our interest is moved toward the issue that the normality of error terms

is not satisfied and they are distributed from any other densities. The followings

are provided as four cases.

. Skewed distribution:Ⅰ e i= X i- β, where X i ∼ Exp (θ =1/β)

. Uniform distribution:Ⅱ e i ∼ U(-c , c)

. Heavy tailed distribution:Ⅲ ei ∼ tν (low value of ν)

. Bimodal (Mixture of normals):Ⅳ

e i ∼ {N (μ1 , σ
2
1 ) with probability π1

N (μ2 , σ
2
2 ) with probability π2= 1-π1
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with π 1μ 1+ π 2μ 2 = 0 .

Additionally, without loss of generality, we may assume that

π1= π2=
1
2
, μ 1 = -μ 2 , and σ

2
1= σ

2
2
. (3.2)

Note that it is necessary that density of ei's for each case have mean 0 and

equal variance. Especially, the variance of the mixture distribution of normals

can be obtained as follows.

A random variable x has a normal mixture distribution if the data originate

from a fixed number k of normal densities. A k-component normal mixture

has pdf

fk(x) = ∑
k

j=1
π jφ (x ;μ j, σ j ) (3.3)

where φ(x ;μ j, σ j) is a normal pdf with mean μj and standard deviation σj and

πj are weights satisfying

∑
k

j= 1
w j= 1, w j≥ 0.

Given the mixture parameters {π j, μ j, σ j}, j = 1 , ⋯ , k , the mean μeq and

variance σ2eq of the distribution are

μ eq = ∑
k

j= 1
π jμ j (3.4)

σ2eq= ∑
k

j=1
π j (σ

2
j + μ

2
j ) - μ

2
eq (3.5)

From (3.2), (3.4) and (3.5), using k = 2 , variance of normal mixture is

easily calculated.

Plots of above four densities including the normal condition are shown in Figure

1 when σ 2 = 3 . Thus parameter of each density is θ = 1/ 3 , c= 3, and ν = 3.

Also, using (3.2), we have μ 1 = 2 and σ21 = σ
2
2 = 1 to satisfy the equal

variance between 5 densities.
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<Figure 1> Plots of densities for error terms

4. Simulation Study4. Simulation Study4. Simulation Study4. Simulation Study

Under the model setup in Section 3, given data yyyy = (y1 ,⋯ ,ym)T, we shall
calculate the simulated Bayes risk differences for two EB and HB estimators

under 4 model perturbation cases given by

1
mR

∑
m

i=1
∑
R

r=1
( θ̂ EB (p)ir - θ̂ EB (n)ir )

2
(4.1)

1
mR

∑
m

i= 1
∑
R

r=1
( θ̂ HB (p)ir - θ̂ HB (n)ir )

2
(4.2)

We shall now conduct a simualtion study and then calculate the empirical and

hierarchical Bayes estimators. We proceed our simulation in the following way:
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Step 1. Start the values A = 1 and m = 10.

Step 2. Iterate the following procedure 10,000 times.

A) Generate θi, i = 1 ,⋯ ,m , from the normal density with mean 0 and

variance A.
B) Choose one of the error model and generate ei's from its density.

Adding y i=θ i+e i, we have new samples yyyy = (y1 ,⋯ ,ym)T.
C) Use (2.2) and (2.9), respectively, to obtain the θ̂EB(p)ir and θ̂HB(p)ir

estimators with given data yyyy.

D) Calculate θ̂ EB(n)ir
and θ̂ HB(n)ir

with given normal data.

E) After 10,000 iterations, calculate (4.1) and (4.2).

Step 3. Modifying A (= 1,2,3) and m(=10,30,50,100), repeat the Step 1 and 2.
After 10,000 times iterations, these given quantities are provided in Table 1

and 2 when σ2= 2 and Table 3 and 3 when σ2= 3, respectively.

5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks

In this paper, we observe the effects for estimating the Bayes estimators when

assumption that the error terms are independently and normally distributed is no

longer satisfied. For non-normal error cases such as exponential distribution,

uniform distribution, heavy-tailed distribution (i.e., Student t-distribution with
low degrees of freedom) and mixture distribution of normals, we compute the

Bayes risk difference between normal and nonnormal errors for the EB and

HB estimators based on simulation. Our simulation results show that uniform

case has the smallest quantity than any other cases. However, as m is large
enough, for example m= 100, all Bayes risk differences among four cases are
nearly same. This seems to be partly due to the Central Limit Theorem. But

the Bayes risk differences are quite considerable even when m is large

enough. Therefore, if we fall in the situation that the basic normality

assumption for the error is not satisfied, it seems to be necessary to find

more information for analysis.
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A m
Bayes risk difference

Exponential Uniform t Mixture

1

10 1.857682 1.562864 2.020998 1.609981

30 0.970262 0.823018 0.981484 0.845192

50 0.760994 0.673663 0.771765 0.680867

100 0.612954 0.559175 0.622611 0.565584

2

10 2.159192 1.952189 2.155329 1.990813

30 1.413695 1.326626 1.436548 1.337724

50 1.252127 1.196393 1.257925 1.202925

100 1.132534 1.101349 1.145327 1.106238

3

10 2.428180 2.307849 2.429307 2.323360

30 1.785523 1.725255 1.784403 1.736631

50 1.657591 1.616681 1.665927 1.619311

100 1.540722 1.520612 1.553463 1.517464

<Table 1> Simulated Bayes risk difference: EB ( σ2= 2)

A m
Bayes risk difference

Exponential Uniform t Mixture

1

10 1.231158 1.212605 1.268657 1.222339

30 0.629980 0.631424 0.633770 0.632475

50 0.504239 0.503871 0.504661 0.505580

100 0.416289 0.415944 0.416219 0.416324

2

10 1.652823 1.613780 1.632313 1.617263

30 1.178952 1.179666 1.184807 1.181775

50 1.102116 1.104663 1.104613 1.103606

100 1.054553 1.054176 1.055971 1.055721

3

10 2.113442 2.082222 2.094915 2.078273

30 1.873554 1.875266 1.874860 1.877861

50 1.837898 1.837979 1.838611 1.839089

100 1.803275 1.802409 1.805150 1.802743

<Table 2> Simulated Bayes risk difference: HB ( σ2= 2)
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A m
Bayes risk difference

Exponential Uniform t Mixture

1

10 2.703815 2.095144 2.892363 2.121254

30 1.216920 0.949108 1.503161 0.964257

50 0.909195 0.721589 1.081143 0.732254

100 0.643260 0.544182 0.866316 0.547590

2

10 2.973919 2.568638 3.218669 2.591406

30 1.695215 1.504795 1.899276 1.511079

50 1.385524 1.274057 1.593561 1.283963

100 1.194081 1.117276 1.318456 1.116336

3

10 3.225439 2.979093 3.415805 3.008586

30 2.132386 1.989260 2.488465 1.994696

50 1.889301 1.794401 2.081812 1.800633

100 1.688603 1.647797 1.840588 1.650419

<Table 3> Simulated Bayes risk difference: EB ( σ2= 3)

A m
Bayes risk difference

Exponential Uniform t Mixture

1

10 1.680362 1.645251 1.690728 1.643587

30 0.723506 0.718995 0.726910 0.720451

50 0.533489 0.535871 0.542892 0.535366

100 0.379559 0.381354 0.381060 0.381009

2

10 2.066405 2.027080 2.157352 2.032453

30 1.195144 1.195040 1.204596 1.194297

50 1.013015 1.015317 1.018567 1.015581

100 0.898230 0.898681 0.897748 0.897851

3

10 2.454180 2.436912 2.487310 2.445730

30 1.762546 1.759589 1.770420 1.759352

50 1.655088 1.653654 1.656708 1.656593

100 1.571932 1.571272 1.572184 1.571244

<Table 4> Simulated Bayes risk difference: HB ( σ2= 3)
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