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AbstractAbstractAbstractAbstract

This paper focuses on the likelihood based confidence intervals for two
inverse gaussian distributions when the parameter of interest is common
scale parameter. Confidence intervals based on signed loglikelihood ratio
statistic and modified signed loglikelihood ratio statistics will be compared
in small sample through an illustrative simulation study.
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1. Introduction1. Introduction1. Introduction1. Introduction

The inverse gaussian distribution has potentially useful applications in a wide

variety of fields such as biology, economics, reliability theory, life testing and

social science as discussed in Chhikara and Folks (1978,1989) and Seshdri (1999).

Tweed (1957a, 1957b) studied many important statistical properties of the inverse

gaussian distribution and discussed the similarity between statistical methods

based on the inverse gaussian distribution and those based on the normal theory.

The scale parameter of the inverse gaussian distribution plays important role in

the analysis of reciprocals (Tweed, 1957a; Fries and Battacharyya, 1983) and

regression models (Whitmore 1979).

1) Department of Asset Management, Daegu Haany University, Kyungsan, 712-240, Korea.
E-mail : wdlee@dhu.ac.kr

2) Department of Statistics, Kyungpook National University, Taegu, 702-701, Korea.

3) Department of Information Statistics, Andong National University, Andong, 760-749,
Korea.

4) Department of Information Statistics, Andong National University, Andong, 760-749,
Korea.



Woo Dong Lee Kil Ho Cho Young Joon Cha Jung Hwan Ko⋅ ⋅ ⋅964

In this paper, our purpose is to make statistical inference on the common scale

parameter of two independent inverse gaussian distributions. Specially, we want to

construct an approximate confidence interval for common scale parameter based on

likelihood-based methods. We propose two likelihood-based methods which are the

signed loglikelihood ratio statistic and the modified signed loglikelihood ratio

statistic (Barndorff-Nielsen and Cox 1994). It is well known that the modified

signed loglikelihood ratio statistic is highly accurate even in small sample.

This article is organized as follows. In Section 2, we introduce the likelihood-

based inference methods, that is, the signed loglikelihood ratio statistic and the

modified signed loglikelihood ratio statistic which will employ to construct

confidence intervals for the common scale parameter. In Section3, we derive the

statistics given in Section 2 in details. In Section 4, through an illustrative

simulation study, the performance of the confidence interval from two statistics

will be compared with respect to estimated coverage probabilities and expected

lengths when the sample size is small.

2. Likelihood-based Methods2. Likelihood-based Methods2. Likelihood-based Methods2. Likelihood-based Methods

Let X be an inverse gaussian distribution with parameters λ and μ1, and its

probability density function is given by

f(x∣μ 1,λ)= λ
2π
x
-
3
2 exp{- λ(x-μ 1)

2

2μ 21x
},x>0,λ>0,μ 1>0,

and let Y be also an inverse gaussian distribution with parameters λ and μ2,

and its probability density function is given by

g(y∣μ 2,λ)= λ
2π
y
-
3
2 exp{- λ(y-μ 2)

2

2μ 22y
},x>0,λ>0,μ 2>0,

and assume X and Y are independently distributed.

Let X 1,X 2,⋯,X n be a random sample from X and Y 1,Y 2,⋯,Y m be a random
sample from Y.
Then the likelihood function of λ,μ1 and μ2 is given by

L(λ,μ 1,μ 2) = (
λ
2π
)

n+m
2 ( ∏

n

i=1
x-3/2i )( ∏

m

j=1
y-3/2j )

×exp{- λ

2μ 21
∑
n

i=1

(x i-μ 1)
2

x i
-
λ

2μ 22
∑
m

j=1

(y j-μ 2)
2

y j }.
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Let θ=(λ,μ 1,μ 2)=(λ,ω), where ω=(μ 1,μ 2). Here λ is the scalar parameter of

interest and ω is a nuisance parameter vector. Then the loglikelihood function

of θ is given by

l(θ) ∝
n+m
2
log(λ)-

3
2
(∑
n

i=1
log(x i)+∑

m

j=1
log(y j))-

λ

2μ 21
∑
n

i=1

(x i-μ 1)
2

x i

-
λ

2μ 22
∑
m

j=1

(y j-μ 2)
2

y j

The above loglikelihood function can be re-expressed as

l(θ) ∝
n+m
2
log(λ)-

3
2
(∑
n

i=1
log(x i)+∑

m

j=1
log(y j))+λ(

n
μ 1
+
m
μ 2
)

-
λ
2
(∑
n

i=1
x-1i +∑

m

j=1
y-1j )-

λ

2μ 21
∑
n

i=1
x i-

λ

2μ22
∑
m

j=1
y j.

From this loglikelihood, the maximum likelihood estimates of θ are given by

μ1̂=∑
n

i=1

x i
n
, μ 2̂= ∑

m

j=1

y j
m
and λ̂=

n+m

∑
n

i=1
(x -1i - x

-1
)+∑

m

j=1
(y -1j - y

-1
)

.

For fixed λ, the constrained maximum likelihood estimates of ω are

μ 1̃(λ)= x and μ 2̃(λ)= y.

Denote it as ω̃(λ)=( μ 1̃(λ), μ 2̃(λ)).

One can make statistical inference about λ based on the signed loglikelihood

ratio statistics given by

r≡r(λ)=sgn( λ̂-λ){l( λ̂, ω̂) - l(λ, ω̃(λ))} 1/2. (1)

It is well known that this statistic r distributed as standard normal distribution

with asymptotic error O(n -1/2). That is r is the first-order approximation. For
testing H 0:λ=λ 0, a two sided p-value can be obtained from

p-value= 2P{r>∣r 0∣}≈2[1-Φ(∣r 0∣)], (2)

where Φ(⋅) is the distribution function of standard normal distribution and
r 0=r(λ 0) is the observed values of r under the null hypothesis. Furthermore,

the approximate 100(1- α)% confidence interval for λ can be obtained from
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{λ:∣r(λ)∣≤z α/2}, (3)

where z α/2 is the 100(1- α/2)th percentile of the standard normal distribution.

Generally, the first-order approximation is not accurate especially when the sample

size is small. There are several ways to improve the accuracy of the

approximation by adjusting the signed loglikelihood ratio statistics r.

Among the others, the modified signed loglikelihood ratio statistic, r*,
developed by Barndorff-Nielsen (1986, 1991), is quite accurate approximation.

In fact, this is the third-order approximation and is given by

r *≡r *(λ)= r(λ)+r(λ) -1log{ u(λ)r(λ) }, (4)

where u(λ) is a statistic given by

u(λ)=
∣l ; θ̂( λ̂, ω̂)- l; θ̂(λ, ω̃(λ)) l ω; θ̂(λ, ω̃(λ))∣
{∣j θθ( λ̂, ω̂)∣∣j ωω(λ, ω̃(λ))∣} 1/2 , (5)

where the sample-space derivatives are defined by

l
; θ̂
(λ,ω)=

∂

∂ θ̂
l(λ,ω; θ̂), (6)

the mixed derivatives as

l
ω; θ̂
(λ,ω)=

∂
∂ω
l
; θ̂
(λ,ω), (7)

and jθθ( λ̂, ω̂) is the observed information matrix and j ωω(λ, ω̃(λ)) is the

observed nuisance information matrix (Barndorff-Nielsen, 1991). This statistic

r* also distributed as standard normal distribution with asymptotic error

O(n -3/2). One can also obtain the p-value of two sided test for testing

H 0:λ=λ 0 based on r
* as

p-value ＝ 2P{r *>∣r *0∣}≈2[1-Φ(∣r *0∣)], (8)

which will be more accurate than (2). And the approximate 100(1- α)%

confidence interval can be obtained from

{λ:∣r *(λ)∣≤z α/2}. (9)
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3. Derivation of the Signed Log Likelihood Ratio Statistic and3. Derivation of the Signed Log Likelihood Ratio Statistic and3. Derivation of the Signed Log Likelihood Ratio Statistic and3. Derivation of the Signed Log Likelihood Ratio Statistic and

the Modified Signed Log Likelihood Ratio Statisticthe Modified Signed Log Likelihood Ratio Statisticthe Modified Signed Log Likelihood Ratio Statisticthe Modified Signed Log Likelihood Ratio Statistic

Now, the signed log likelihood ratio statistic given in (1) can be easily obtained

from the log likelihood function. But the modified signed log likelihood ratio is

rather difficult.

Since the two sample inverse gaussian model is a full rank exponential model,

the log likelihood function based on the sample data is only related to a minimum

sufficient statistic

t= (t1, t2,,,, t3),,,,

where

t 1= ∑
n

i= 1
x - 1i + ∑

m

j= 1
y - 1j , t 2= ∑

n

i=1
x i and t 3= ∑

m

u=1
y j.

The loglikelihood function can be rewritten as

l(λ,ω;t) ∝
n+m
2
log(λ)-

3
2
(∑
n

i=1
log(x i)+∑

m

j=1
log(y j))+λ(

n
μ 1
+
m
μ 2
)-
λ
2
t 1

-
λ

2μ 21
t 2-

λ

2μ 22
t 3.

There is one-to-one transformation between the maximum likelihood estimator

θ̂= ( λ̂, μ1̂, μ2̂) and t=(t 1,t 2,t 3), and the transformation Jacobian matrix is ∂ θ̂/∂t.

Hence the sample space derivatives with respect to θ̂ in the formula (5) for u
can be derived based on the sample space derivatives with respect to t. And

using the identity j θθ( θ̂)= lθ; θ̂( θ̂) (Barndorff-Nielsen and Cox, 1994) and by

canceling the determinant of the transformation Jacobian matrix, one can show

that u reduces to the following form:

u(λ)=
∣l ;t(λ,ω)-l ;t(λ, ω̃(λ)) l ω;t(λ, ω̃(λ))∣

∣l θ;t( λ̂, ω̂)∣ { ∣j θθ( λ̂, ω̂)∣
∣j ωω(λ, ω̃(λ))∣ }

1/2

,

where the sample space derivatives l ;t(θ)=∂l(θ;t)/∂t and the mixed

derivatives l ω;t(θ)=∂
2l(θ;t)/∂ω∂t are given by
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l ;t(θ)=(- λ2 ,- λ

2μ 21
,-
λ

2μ 22
)
T

and
l ω;t(θ)=













0
λ

μ31
0

0 0
λ

μ32

respectively. The observed information matrix jθθ( λ̂, ω̂) is given by

j θθ ( λ̂ , ω̂ ) =













n + m

2 λ̂
2

n

μ 1̂
2 -

t 2

μ 1̂
3

m

μ 2̂
2 -

t 3

μ 2̂
3

n

μ 1̂
2 -

t 2

μ 1̂
3

3 λ̂ t 2

μ 1̂
4 -

2n λ̂

μ 1̂
3 0

m

μ 2̂
2 -

t 3

μ 2̂
3 0

3 λ̂ t 3

μ 2̂
4 -

2m λ̂

μ 2̂
3

.

And the mixed derivative matrix lθ;t( θ̂) is given by

l θ;t( θ̂ ) =













-
1
2

0 0

-
1

2 μ 1̂
2

λ̂

μ 1̂
3 0

-
1

2 μ 2̂
2 0

λ̂

μ 2̂
3

....

Finally, the observed nuisance information matrix j ωω(λ, ω̃(λ)) is given by

jωω(λ, ω̃(λ))=












3λt 2
μ 1̃(λ)

4 -
2nλ

μ 1̃(λ)
3 0

0
3λt3
μ 2̃(λ)

4 -
2mλ
μ 2̃(λ)

3

....

Therefore, the statistic u(λ) can be calculated using the above equations.

Hence r *(λ) can be obtained from r(λ) and u(λ). Now, we are ready to
obtain confidence intervals for λ using (3) and (9).

4. An Illustrative Simulation Study4. An Illustrative Simulation Study4. An Illustrative Simulation Study4. An Illustrative Simulation Study

In this section, we will give an example and some simulation results. The aim

of our simulation is to compare the estimated coverage probability, coverage error,

upper and lower error probability, and average lengths for r and r*. The
coverage error is defined as the absolute difference between the estimated



Likelihood Based Confidence Intervals for the Common Scale Parameter

in the Inverse Gaussian Distributions

969

coverage probability and nominal value (0.90). And upper and lower error

probability is the percentage of the intervals falling above and below the true

parameter.

Example.Example.Example.Example. The following two groups of data are artificially generated from two

independent inverse gaussian distribution with parameters IG(5,2) and

IG(0.5,2), respectively. The data are as follows:

X 2.610 3.302 1.121 12.769 0.706

Y 0.164 0.572 0.201 0.896 0.390 0.562 0.285 0.668

From the above data, the maximum likelihood estimates of θ were μ 1̂= 4.102,

μ 2̂= 0.467, λ̂= 1.6178. The 95% confidence interval for λ based on r was

(0.672, 3.199) and r* was (0.482, 2.745). The length of the 95% confidence

interval based on r and r* were 2.528 and 2.263, respectively. The two

intervals contain the true parameter and the length of the interval based on r*

is shorter than that based on r.

We perform simulation to estimate the coverage probability, coverage error,

upper and lower error probability and average length. We assume that sample

sizes are (n,m)=(5,5),(10,5),(5,10),(10,10),(15,10), (10,15) and (15,15). And (λ,

μ1, μ2) =(3,4,3),(0.5,4,3) and (1,4,3). We have generated 10,000 independent

random samples. The simulation results are given from Table 1 to Table 3.

From tables, we observe that the coverage probabilities are lower than the

nominal level 0.90, or equivalently, the coverage errors are relatively large for the

interval based on the singed log likelihood statistic r. Moreover, the biases of
the upper error probabilities of r are large and they extremely asymmetric in
small sample size.

In contrast, the confidence interval based on r* gives nearly the exact
coverage probabilities. Furthermore, its upper and lower error probabilities are

close to the nominal error levels and they are much more symmetric than

those of the interval based on r.

The average length of the interval based on r* is shorter than that of the
interval based on r.
Overall, based on the comparison criteria examined in the above, the confidence

interval based on r* performs much better than the confidence interval based
on r.
We have tried several parameter values different from Table 1 to Table 3, but

their results were almost same.
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<Table 1> Coverage probabilities, coverage errors, error probabilities and average

lengths of two sided 90% confidence intervals for r(λ) and r *(λ)
(λ=3,μ 1=4,μ 2=3)

Sample

size
Methods

Coverage

Probability

Coverage

Error

Upper Error

Probability

Lower Error

Probability

Average

Length

5,5
r

r*
0.819

0.901

0.081

0.001

0.167

0.052

0.014

0.047

7.413

6.392

10,5
r

r*
0.848

0.902

0.052

0.002

0.134

0.052

0.018

0.046

4.940

4.485

5,10
r

r*
0.841

0.898

0.059

0.002

0.141

0.055

0.018

0.047

4.993

4.533

10,10
r

r*
0.857

0.899

0.043

0.001

0.125

0.055

0.018

0.046

3.962

3.688

15,10
r

r*
0.865

0.896

0.035

0.004

0.111

0.052

0.024

0.052

3.348

3.163

10,15
r

r*
0.871

0.900

0.029

0.000

0.105

0.049

0.024

0.051

3.329

3.145

15,15
r

r*
0.879

0.907

0.021

0.007

0.098

0.044

0.023

0.049

2.951

2.814

<Table 2> Coverage probabilities, coverage errors, error probabilities and average

lengths of two sided 90% confidence intervals for r(λ) and r *(λ)
(λ=0.5,μ 1=4,μ 2=3)

Sample

size
Methods

Coverage

Probability

Coverage

Error

Upper Error

Probability

Lower Error

Probability

Average

Length

5,5
r

r*
0.816

0.897

0.084

0.003

0.169

0.053

0.015

0.050

1.234

1.064

10,5
r

r*
0.855

0.904

0.045

0.004

0.128

0.048

0.017

0.048

0.820

0.745

5,10
r

r*
0.845

0.901

0.055

0.001

0.138

0.053

0.017

0.046

0.830

0.754

10,10
r

r*
0.853

0.896

0.047

0.004

0.127

0.056

0.020

0.048

0.661

0.615

15,10
r

r*
0.867

0.900

0.033

0.000

0.110

0.050

0.023

0.050

0.558

0.527

10,15
r

r*
0.870

0.899

0.030

0.001

0.106

0.050

0.024

0.051

0.555

0.525

15,15
r

r*
0.882

0.908

0.018

0.008

0.096

0.045

0.022

0.047

0.491

0.469
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<Table 3> Coverage probabilities, coverage errors, error probabilities and average

lengths of two sided 90% confidence intervals for r(λ) and r *(λ)
(λ=1,μ 1=4,μ 2=3)

Sample

size
Methods

Coverage

Probability

Coverage

Error

Upper Error

Probability

Lower Error

Probability

Average

Length

5,5
r

r*
0.816

0.897

0.084

0.003

0.171

0.055

0.013

0.048

2.485

2.143

10,5
r

r*
0.853

0.906

0.047

0.006

0.130

0.047

0.017

0.047

1.640

1.489

5,10
r

r*
0.843

0.901

0.057

0.001

0.140

0.054

0.017

0.045

1.663

1.510

10,10
r

r*
0.853

0.898

0.047

0.002

0.128

0.055

0.019

0.047

1.321

1.230

15,10
r

r*
0.866

0.899

0.034

0.001

0.111

0.051

0.023

0.050

1.116

1.055

10,15
r

r*
0.869

0.897

0.031

0.003

0.107

0.051

0.024

0.052

1.110

1.049

15,15
r

r*
0.881

0.904

0.019

0.004

0.097

0.047

0.022

0.049

0.984

0.938
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