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Burn-in is a widely used method to improve the quality of products or
systems after they have been produced. In this paper, the problem of
determining optimal burn-in time for a system which performs given
mission is considered. It is assumed that the given mission time is not a
fixed constant but a random variable which follows an exponential
distribution. Assuming that the underlying lifetime distribution of a
system has an eventually increasing failure rate function, an upper bound
for the optimal burn-in time which maximizes the probability of
performing given mission is derived. The obtained result is also applied to
an illustrative example.
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1. Introduction1. Introduction1. Introduction1. Introduction

Burn-in is a technique applied with the intention of eliminating early failures of

a system or product. Due to high failure rate in the early stages of system life,

burn-in procedures have been recognized as a useful method for detecting early

failures of components or systems before customer delivery. Without burn-in, a

number of defective components could be delivered to customers. By applying

burn-in, the manufacturer delivers fewer defective components, and consequently

the lower failure rates reduce field-repair costs. An introduction to this important

area of reliability can be found in Jensen and Petersen (1982) and Kuo and Kuo

1) This work was supported by the Pukyong National University Research Fund in 2003.

2) Assistant Professor, Division of Mathematical Sciences, Pukyong National University,
Busan, 608-737, Korea.
E-mail: jhcha@pknu.ac.kr



Ji Hwan Cha862

(1983). Since too excessive or insufficient burn-in is either harmful to the

performance of system or costly, one of the major problems is to decide how long

the procedure should be. The best time to stop the burn-in procedure for a given

criterion is called the optimal burn-in time. In the literature, certain cost structures

have been studied. See, for example, Nguyen and Murthy (1982), Clarotti and

Spizzichino (1991), Mi (1994a) (1996) (1997) and Cha (2000) (2001) (2003). Some

other performance-based criteria, for example, the mean residual life, the reliability

of a given mission time, or the mean number of failures, have also been

considered for determining the optimal burn-in time(See also Mi (1991) (1994b),

Block, Mi and Savits (1994)). An excellent survey of recent research on burn-in

can be found in Block and Savits (1997).

Many practical problems require a system to accomplish a task in field operation

with a given mission time. In this paper, we consider the problem of determining

optimal burn-in time for a system which performs given mission. It is assumed

that the given mission time is not a fixed constant but a random variable which

follows an exponential distribution. In the literature, many objective cost or system

performance functions related with burn-in have been discussed under the

assumption of the bathtub shaped failure rate function. However, recently there

have been many researches on the shape of the failure rate functions of mixture

distributions which is not of the traditional bathtub shaped failure rate function.

Under a general failure rate function assumption which includes the traditional

bathtub shaped failure rate function as a special case, an upper bound for the

optimal burn-in time will be derived.

This paper is organized as follows. In Section 2, a general assumption on the

shape of failure rate function is introduced. It can be seen that this general

assumption includes the traditional bathtub-shaped failure rate function as a

special case. In Section 3, the probability of performing given mission for a

burned-in system with burn-in time  will be obtained and an upper bound for
the optimal burn-in time which maximizes the probability will be derived. In

Section 4, an illustrative example will be presented. Finally in Section 5, some

concluding remarks are discussed.

2. General Failure Rate Model2. General Failure Rate Model2. General Failure Rate Model2. General Failure Rate Model

It is widely believed that many products, particularly electronic products or

devices such as silicon integrated circuits, exhibit bathtub shaped failure rate

functions. This belief is supported by much experience and extensive data

collected by practitioners and researchers in many industries. Hence most of

researches on burn-in has been done under the assumption of bathtub shaped

failure rate function. The definition of bathtub shaped failure rate function is as

follows.
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Definition 1Definition 1Definition 1Definition 1. A failure rate function    is said to have a bathtub shape if

there exist ≤≤≤∞ such that

   





   ≤≤
      ≤≤
   ≥

where  and  are called the first and second change points of   .

The time interval    is called the infant mortality period; the interval

  , where    is flat and attains its minimum value, is called the normal

operating life or the useful life; the interval ∞ is called the wear-out

period. An example of bathtub shaped failure rate function is presented in the

following Figure 1.

<Figure 1> Bathtub Shaped Failure Rate Function

Although the bathtub shaped failure rate function is assumed in most of

researches on burn-in, it does not model many other situations as pointed out in

Wong (1988) (1989) (1991) and Klutke et. al. (2003). In regard to this point, we

will consider burn-in problems under a more general assumption introduced in Mi

(2003) which includes the usual bathtub shaped failure rate function as a special

case.

Definition 2Definition 2Definition 2Definition 2. A failure rate function   is eventually increasing if there

exists ≤ ∞ such that   strictly increases in ∊ ∞. For an

eventually increasing failure rate function   the first and second wear-out

points  and   are defined by
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  ≥       ≥
   ≥       ≥

An example of eventually increasing failure rate function is presented in Figure 2.

Figure 2 is neither of the traditional bathtub shape nor of the modified

bathtub-shape. Note also that if   has a bathtub shape with change points

≤ ∞, then it is eventually increasing with    and    . Therefore,
the eventually increasing failure rate function includes the traditional bathtub

shaped failure rate function as a special case.

Mi (2003) considered optimal burn-in under the assumption of eventually

increasing failure rate function. In this paper we will derive the upper bound for

optimal burn-in time under the assumption of eventually increasing failure rate

function. For more detailed discussions about general assumptions for the shape of

failure rate function in burn-in model, see also Cha and Mi (2005).

<Figure 2> Eventually Increasing Failure Rate Function

3. Optimal Burn-In3. Optimal Burn-In3. Optimal Burn-In3. Optimal Burn-In

Let a system have random life  which has distribution function   ,

density  , and failure rate function         , where

         is the survival function of  . Without loss of generality,
throughout this paper, we assume that   is continuous. Furthermore, let

the lifetime of a system which has survived burn-in time  and its CDF be 
and  . Then
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    ≤   ≤              
  

  ≥
and

   ≡     
   

  
   



 

    ∀ ≥

Also, we denote the failure rate function of  as  , which clearly is

given by        ≥. Let  be a given mission time. It is
assumed that  is a random variable which follows an exponential distribution

with its mean  and its pdf         ≥. Furthermore, we
assume that  and  are independent.

Many practical problems require a system to accomplish a task in field operation

with a given mission time. The probability of performing given mission,   ,

is given by

  ≡      


∞

      

 


∞

        ⋅ 

  







⋅  



 ⋅



∞

   


 (1)

where  ≡ 




 In this paper, we consider optimal burn-in time

which maximizes    in (1).

Let  be optimal burn-in time which satisfies

   ≥  

In most burn-in models, the optimal burn-in time cannot be given by an

explicit form and must be obtained numerically. In this case, some bounds for the

optimal burn-in time may be useful since the numerical search for the optimal

burn-in time will be greatly reduced. The following result gives an upper bound

for optimal burn-in time  when the failure rate function is eventually

increasing.

Theorem 1Theorem 1Theorem 1Theorem 1. Suppose that the lifetime distribution function    has an
eventually increasing failure rate function    with the first wear-out point

. Then  is an upper bound for optimal burn-in time. That is,  satisfies

≤≤.
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proof.proof.proof.proof.

It suffices to show that     , for all ≥, since this will imply that   
is strictly decreasing in  ∊ ∞. By the assumption of the eventually

increasing failure rate function assumption,   ≥  , for all ≥, and
      , for all ≥ . Hence it holds that
    


    


⋅     


 ⋅



∞

    

   



 

⋅     


 ⋅



∞

    

⋅    


   



 

⋅     


 
∞



⋅    

   



 

for all   . This completes the proof.

■

From Theorem 1, we can see that it is sufficient to consider only  ∊   

to find the optimal burn-in time b * when the failure rate function is

eventually increasing.

The following result, which is readily obtained from Theorem 1, gives an upper

bound for optimal burn-in time  when the failure rate function is bathtub

shaped.

Corollary 1Corollary 1Corollary 1Corollary 1. Suppose that the lifetime distribution function    has a bathtub
shaped failure rate function    with the change points ≤ ∞. Then  is
an upper bound for optimal burn-in time. That is,  satisfies ≤≤.
proof.proof.proof.proof.

If    is a bathtub shaped failure rate function with change points ≤ ∞
then it is an eventually increasing with   . Hence the desired results

follow from Theorem 1.

■

4. Numerical Example4. Numerical Example4. Numerical Example4. Numerical Example

In this section, an illustrative example will be given. Suppose that the failure

rate function of the system is given by
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   






       ≤≤
       ≤≤
        ≤≤
       ≤≤
          ≤

The graph for the failure rate function is presented in Figure 3.

<Figure 3> Failure Rate Function

<Figure 4> The Graph for   

Then the failure rate function is eventually increasing with two wear-out points

     . Assume that the mean of the mission time  is given by

  . By Theorem 1 in the previous section, an upper bound for the

optimal burn-in time is given by   . Hence it is sufficient to consider
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only  ∊    to find the optimal burn-in time b *. The graph of the

probability of performing given mission    is presented in Figure 4. By

numerical search, the optimal burn-in time is given by    and the

maximum probability is     .

5. Concluding Remark5. Concluding Remark5. Concluding Remark5. Concluding Remark

In the literature, many objective cost or system performance functions related

with burn-in have been discussed under the assumption of the bathtub shaped

failure rate function and it has been obtained that the optimal burn-in time must

be before the first change point  if the underlying lifetime distribution has a

bathtub shaped failure rate function. However, recently there have been many

researches on the shape of the failure rate functions of mixture distributions

which is not of the traditional bathtub shaped failure arte function.. In this

paper, we considered more general failure rate function models for burn-in

procedures, eventually increasing failure rate function. It has been shown that

the general failure rate function model considered in this paper include the

traditional bathtub shaped failure rate function as a special case. Under the

general failure rate function model, we have obtained an upper bound for

optimal burn-in time. By an illustrative example, we have shown that the

optimal burn-in time can be found with ease using the bound that we have

obtained.
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