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Abstract

When X  and Y  have independent Poisson distributions, we develop a 
Bayesian one-sided testing procedures for the ratio of two Poisson means. 
We propose the objective Bayesian one-sided testing procedures for the 
ratio of two Poisson means based on the fractional Bayes factor and the 
intrinsic Bayes factor. Some real examples are provided.
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1. Introduction

The Poisson distribution is applied to model many processes in a broad variety 

of field such as biology, ecology, epidemiology, medicine, industrial quality control 

and agriculture. The comparison of Poisson means from two independent samples 

is of great interest. For instance in the comparison of incidence of breast cancer 

study two groups of women were compared to determine whether those who had 

been examined using X-ray fluoroscopy during treatment for tuberculosis has a 

higher rate of breast cancer than those who had not been examined using X-ray 

fluoroscopy (Graham, et. al. 2003; Ng and Tang, 2005).

The present paper focuses on Bayesian testing procedure for the ratio of two 
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Poisson means. In Bayesian testing problem, the Bayes factor under proper priors 

or informative priors have been very successful. However, limited information and 

time constraints often require the use of noninformative priors. Since 

noninformative priors such as Jeffreys' priors or reference priors (Berger and 

Bernardo, 1989, 1992) are typically improper so that such priors are only defined 

up to arbitrary constants which affects the values of Bayes factors. Spiegalhalter 

and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) have made 

efforts to compensate for that arbitrariness.

Spiegalhalter and Smith (1982) used the device of imaginary training samples in 

the context of linear model comparisons to choose the arbitrary constants. But the 

choice of imaginary training sample depends on the models under comparison, and 

so, there is no guarantee that the Bayes factor of Spiegalhalter and Smith (1982) 

is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced 

the intrinsic Bayes factor using a data-splitting idea, which would eliminate the 

arbitrariness of improper priors. O'Hagan (1995) proposed the fractional Bayes 

factor. For removing the arbitrariness he used to a portion of the likelihood with a 

so-called the fraction b. These approaches have shown to be quite useful in 

many statistical areas.

For the comparison for two Poisson means, the most common method of testing 

the difference between two means is the conditional method that was first 

proposed by Przyborowski and Wilenski (1940). The conditional distribution follows 

binomial distribution whose success probability is a function of the ratio of two 

means. Therefore hypothesis testing and interval estimation procedures can be 

readily developed from the exact methods for making inferences about the 

binomial success probability. In particular, Chapman (1952) proposed a confidence 

interval for the ratio of two means which is deduced from the exact confidence 

interval for the binomial success probability due to Clopper and Pearsons (1934). 

Since then some papers have addressed these inferential procedures based on the 

conditional distribution (Gail, 1974; Shiue and Bain, 1982; Nelson, 1991). 

Schwertman and Martinez (1994) give several binomial-normal based approximate 

methods for constructing confidence interval for difference of two means.

Although the conditional test is exact and simple to use, in the two-sampling 

binomial case such a conditional test is known to be less powerful than some 

unconditional tests. For example, see Suissa and Schuster (1985) and Storer and 

Kim (1990). So Krishnamoorthy and Thomson (2004) proposed an unconditional 

test for testing about the difference of two Poisson means. In numerical studies, 

they showed that the unconditional test is very satisfactory in terms of sample 

size, and is more powerful than the conditional test due to Przyborowski and 

Wilenski (1940).

Almost all the work mentioned above is the analysis based on the frequentist 

point of view, there is a little work on this problem from the viewpoint of the 

objective Bayesian framework. So we feel a strong necessity to develop objective 
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Bayesian testing procedure for the ratio of two Poisson means. For dealing this 

problem, we use the fractional Bayes factor (O'Hagan, 1995) and the intrinsic 

Bayes factor (Berger and Pericchi, 1996). 

The outline of the remaining sections is as follows. In Section 2, we introduce 

the Bayesian model selection based on the Bayes factor. In Section 3, using the 

reference priors, we provide the Bayesian testing procedure based on the fractional 

Bayes factor and intrinsic Bayes factor for testing the ratio of two Poisson means. 

In Section 4, some real examples are given.

2. Bayesian Model Selection Methods

Models (or Hypotheses) M 1 , M 2 ,…, Mq  are under consideration, with the data 

x =(x1,x2, … ,xn)  having probability density function f i( x∣ θ i)  under model 

Hi,i=1,2,…,q. The parameter vectors θ i  are unknown. Let π i( θ i)  be the 

prior distribution of model Mi, and let p i  be the prior probabilities of  model Mi,

i=1,2,…,q. Then the posterior probability that the model Mi  is true is

P(Mi∣ x )=( ∑
q

j=1

p j
p i
⋅B ji)

- 1

,                         (1)

where B ji
 is the Bayes factor of model Mj  to model Mi  defined by

B ji=

⌠
⌡f j( x∣ θ j)π j( θ j)d θ j

⌠
⌡f i( x∣ θ i)π i( θ i)d θ i

=
mj( x )

mi( x )
.                    (2)

The B ji
 interpreted as the comparative support of the data for the model j  to 

i. The computation of B ji
 needs specification of the prior distribution π i( θ i)  

and π j( θ). Usually, one can use the noninformative prior, often improper, such as 

uniform prior, Jeffreys prior, reference prior or probability matching prior. Denote 

it as πNi . The use of improper priors π
N
i (⋅)  in (2) causes the B ji

 to contain 

unspecified constants.

2.1 The Intrinsic Bayes Factor Approach

One solution to this indeterminacy problem is to use part of the data as a 

training sample. Let x( l)  denote the part of the data to be so used and let 
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x(- l)  be the remainder of the data, such that

0<m
N
i ( x( l)) <∞, i=1,…,q.                        (3)

In view of (3), the posteriors πNi (θ i∣x( l))  are well defined. Now, consider the 

Bayes factor, B ji( l), for the rest of the data x(- l), using π
N
i (θ i∣x( l))  as the 

priors:

B ji(l)=

⌠
⌡Θ j
f(x(- l)∣θ j, x( l))π

N
j (θ j∣x( l))dθ j

⌠
⌡Θ i
f(x(- l)∣θ i, x( l))π

N
i (θ i∣x( l))dθ i

=B
N
ji⋅B

N
ij( x( l))       (4)

where

B ji=B
N
ji ( x)=

mNj ( x)

m
N
i ( x)

  and  BNij( x( l))=
mNi ( x( l))

m
N
j ( x( l))

are the Bayes factors that would be obtained for the full data x  and training 

samples x( l), respectively. The Bayes factor (4) depends on the specific training 

sample x( l). To avoid the difficulty of choosing x( l), Berger and Perrich (1996) 

proposed the use of a minimal training sample to compute the Bayes factor (4). 

Then, an average over all the possible minimal training samples contained in the 

sample is computed. This gives the arithmetic intrinsic Bayes factor (AIBF) of 

Mj  to Mi  as

B AIji =B
N
ji⋅

1
L ∑

L

l=1
BNij( x( l)).                         (5)

where L  is the number of minimal training samples x( l)  contained in x. Also 

Berger and Pericchi (1998) gives the median intrinsic Bayes factor (MIBF) of Mj  

to Mi  as

B MIji =B
N
ji⋅ME[B

N
ij( x( l))],                          (6)

where ME indicates the median, here to be taken over Bayes factor with respect 

to all the training samples. The MIBF is the most robust and widely applicable 

intrinsic Bayes factor. We can also calculate the posterior probability of Mi  using 

(1), where Bji  is replaced by B
AI
ji
 and B MIji  from (5) and (6). 
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2.2 The Fractional Bayes Factor Approach

The fractional Bayes factor (O'Hagan, 1995) is based on a similar intuition to 

that behind the intrinsic Bayes factor but, instead of using part of the data to 

turn noninformative priors into proper priors, it uses a fraction, b , of each 

likelihood function, L( θ i)= f i( x∣ θ i), with the remaining 1- b  fraction of the 

likelihood used for model discrimination. Then the fractional Bayes factor of model 

Mj  versus model Mi  is

B
F
ji=B

N
ji⋅

⌠
⌡f

b
i ( x∣ θ i )π

N
i ( θ i )d θ i

⌠
⌡f
b
j ( x∣ θ j)π

N
j ( θ j)d θ j

=B
N
ji⋅F

b
ij,

and f i( x∣ θ i)  is the likelihood function, b  specifies a fraction of the likelihood 

which is to be used as a prior density, and F
b
ij= m

b
i ( x)/m

b
j ( x)  is the correction 

term. Among the choice of fraction b  in O'Hagan (1995), we use b=m/n, where 

m  is the size of the minimal training sample size, because of the appealing 

arguments in its favor given by Berger and Mortera (1995) and Kass and 

Wasserman (1995).

 

3. Bayesian Test Procedures

Let X  be a Poisson distribution with probability mass function

f(x∣λ) =
λ xe- λ

x!
, x= 0,1,2,…                     (7)

where λ > 0  is the mean parameter. Suppose that X 1,…,X n 1
 and Y 1,…,Y n 2

 

denote independent random samples from Poisson distributions with the mean λ  

and the mean ηλ , respectively. Then the joint probability mass function of 

X 1,…,X n 1
 and Y 1,…,Y n 2

 is

f(x, y∣λ,η)=
λ
n 1x+ n 2y

η
n 2y
exp(-n 1 λ-n 2ηλ)

∏
n 1

i=1
xi! ∏

n 2

i=1
yi!

,

where λ > 0  and η > 0 . The parameter η  is the ratio of two Poisson means. Kang, 

Lee and Kim (2002) derived the reference prior (Berger and Bernardo, 1989, 1992) 
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for η  as follows: 

π(λ,η)= η
-
1
2
λ
-
1
2
(n 1+n 2 η)

-
1
2
.

Also they showed that the propriety of posteriors for a general class of priors 

which include the reference prior and Jeffreys' prior, and the reference prior meet 

very well the target coverage probabilities. Note that the marginal posterior 

distribution of η  under reference prior and Jeffreys' prior is the same, but in our 

Bayesian hypothesis testing problem, the results based on reference prior and 

Jeffreys' prior are different because of the constant in computation of the marginal 

density. 

We want to test the hypotheses H 1:η≤η 0  vs. H 2:η > η 0 . Our interest is to 

develop a Bayesian one-sided test based on the fractional and intrinsic Bayes 

factors for H 1  vs. H 2  under the reference priors.

3.1 Bayesian Test Procedure based on the Fractional Bayes Factor

Under the hypothesis H 1, the reference prior for λ  and η  is

π 1(λ, η)= η
-
1
2 λ

-
1
2 (n 1+n 2 η)

-
1
2 I [ η≤η 0].

and under H 2 , the reference prior for λ  and η  is

π 2(λ, η)= η
-
1
2
λ
-
1
2
(n 1+n 2 η)

-
1
2
I [ η > η 0].

where I [⋅]  is the indicator function. Then the elements of B
N
21
 in fractional 

Bayes factor are given by

    m
N
1 ( x, y) =

⌠
⌡

η 0

0

⌠
⌡

∞

0
L( η,λ∣ x, y )π 1(η,λ )dλdη

             =
Γ(n 1x+n 2 y+0.5)

∏
n 1

i=1
xi! ∏

n 2

i=1
yi!

⌠
⌡

η 0

0
η
n 2y-0.5(n 1+n 2η)

- ( n 1 x+ n 2y+1)dη

             =
Γ(n 1x+n 2 y+0.5)

∏
n 1

i=1
xi! ∏

n 2

i=1
yi!

S 1( x,y )

and



Bayesian One-Sided Testing for the Ratio of Poisson Means 625

   m
N
2 ( x, y) =

⌠
⌡

∞

η0

⌠
⌡

 ∞

 0
L( η,λ∣ x, y )π 2(η,λ )dλdη

            =
Γ(n 1x+n 2 y+0.5)

∏
n 1

i=1
xi! ∏

n 2

i=1
yi!

⌠
⌡

∞

η0
η
n 2y-0.5(n 1+n 2η)

- ( n 1 x+ n 2y+1)dη.

            =
Γ(n 1x+n 2 y+0.5)

∏
n 1

i=1
xi! ∏

n 2

i=1
yi!

S 2( x,y ) ,

where S 1( x, y )=
⌠
⌡

η 0

0
η
n 2y-0.5(n 1+n 2η)

- ( n 1 x+ n 2y+1)dη  and S 2( x,y )=
⌠
⌡

∞

η0

 

η
n 2y-0.5(n 1+n 2η)

- ( n 1 x+ n 2y+1)dη.  Since the training sample for hypotheses H 1  

and H 2  consists of two independent and identically distributed random variables, 

it seems natural in the fractional setting to formulate the correction term Fb12  

with the fractions 1/n 1  and 1/n 2  of each likelihood. Thus the element of 

correction term Fb12  is given as follows.

mb1( x, y) =
⌠
⌡

η 0

0

⌠
⌡

∞

0
L

1
n 1 (λ∣ x )L

1
n 2 (η,λ∣ y )π 1(η,λ)dλdη

    =
Γ(n 1x+ n 2 y+0.5)

[ ∏
n 1

i=1
xi!]

1/n 1[ ∏
n 2

i=1
yi!]

1/n 2

⌠
⌡

η 0

0
η y-0.5(1+η) - ( x+ y+0.5) (n 1+n 2η)

- 0.5dη

    =
Γ(n 1x+n 2 y+0.5)

[ ∏
n 1

i=1
xi!]

1/n 1[ ∏
n 2

i=1
yi!]

1/n 2

S 1( x, y ;b)

and

mb2( x, y) =
⌠
⌡

∞

η0

⌠
⌡

 ∞

 0
L

1
n 1 (λ∣ x )L

1
n 2 (η,λ∣ y )π 2(η,λ)dλdη

   =
Γ(n 1x+n 2 y+0.5)

[ ∏
n 1

i=1
xi!]

1/n 1[ ∏
n 2

i=1
yi!]

1/n 2

⌠
⌡

 ∞

 η 0
η y-0.5(1+η) - ( x+ y+0.5) (n 1+n 2η)

- 0.5dη.

   =
Γ(n 1x+n 2 y+0.5)

[ ∏
n 1

i=1
xi!]

1/n 1
[ ∏
n 2

i=1
yi!]

1/n 2

S 2( x, y ;b) ,

where S 1( x, y ;b)=
⌠
⌡

η 0

0
η
y-0.5

(1+η)
- ( x+ y+0.5)

(n 1+n 2η)
- 0.5
dη  and S 2( x,y ;b)  
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=⌠⌡

∞

η0
η y-0.5(1+η) - ( x+ y+0.5) (n 1+n 2η)

- 0.5dη . Thus the fractional Bayes 

factor of H 2  versus H 1  is given by

BF21 =
S 2( x, y )

S 1( x, y )
⋅
S 1( x, y ;b)

S 2( x, y ;b)
.

Note that the calculation of fractional Bayes factor of H 2  versus H 1  requires an 

one dimensional integration. 

3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor

The element B
N
21
 of the intrinsic Bayes factor is computed in the fractional 

Bayes factor. So using minimal training sample, we only calculate the marginal 

densities under H 1  and H 2 , respectively. The marginal density of (X i,Y j)  is 

finite for all 1≤i≤n 1,1≤j≤n 2  and hypotheses. Thus we conclude that any 

training sample of size two is a minimal training sample.

The marginal densities m N
1 (x i,y j)   under H 1  is given by

mN1 (xi,yj) =
⌠
⌡

η 0

0

⌠
⌡

∞

0
f(xi∣λ)f(yj∣η,λ)π 1( η,λ)dλdη

=
Γ(xi+yj+0.5)

xi!yj!
⌠
⌡

η 0

0
η
yj-0.5

(1+η)
- xi-yj-0.5

(n 1+n 2η)
- 0.5
dη

≡
Γ(xi+yj+0.5)

xi!yj!
T 1(xi,yj),

and

mN2 (xi,yj) =
⌠
⌡

∞

η0

⌠
⌡

 ∞

 0
f(xi∣λ)f(yj∣η,λ)π 2( η,λ)dλdη

=
Γ(xi+ yj+0.5)

xi!yj!
⌠
⌡

∞

η0
η
yj-0.5(1+η)

- xi-yj-0.5 (n 1+n 2η)
- 0.5dη

≡
Γ(xi+ yj+0.5)

xi!yj!
T 2(xi,yj),

where T 1(xi,yj)=
⌠
⌡

η 0

0
η
yj-0.5(1+η)

- xi-yj-0.5 (n 1+n 2η)
- 0.5dη  and T 2(xi,yj)   

=⌠⌡

∞

η0
η
yj-0.5(1+η)

- xi-yj-0.5 (n 1+n 2η)
- 0.5dη . Therefore the AIBF of H 2  

versus H 1  is given by
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B
AI
21 =

S 2( x, y )

S 1( x, y )
⋅[ 1L ∑i, j

T 1(xi,yj)

T 2(xi,yj) ].
where L=n 1n 2 . And the MIBF of H 2  versus H 1  is given by

BMI21 =
S 2( x, y )

S 1( x, y )
⋅ME [

T 1(xi,yj)

T 2(xi,yj) ].
Note that the calculation of the AIBF and MIBF of H 2  versus H 1  requires an 

one dimensional integration.

However AIBF are often not suitable for non-nested situation, especially when 

one-sided hypotheses as here (see Dmochowski, 1996). An attractive alternative, 

given by Berger and Pericchi (1996) is to embed the competing models in a larger 

encompassing model H 0  so that all of the H i, i=1,2  are nested within H 0 . 

The encompassing arithmetic intrinsic Bayes factor (EIBF) is then defined as

B EIji =B
N
ji⋅
∑
L

l=1
B
N
i0( x( l))

∑
L

l=1
BNj0( x( l) )

,

where BNi0( x ( l) )= m
N
i ( x ( l) )/m

N
0 ( x ( l) ).  Therefore the marginal densities 

m N
0 (x i,y j)   under H 0(=H 1∪H 2):η > 0  is given by

m
N
0 (xi,yj) =

⌠
⌡

∞

0

⌠
⌡

∞

0
f(xi∣λ)f(yj∣η,λ)π 0( η,λ)dλdη

=
Γ(xi+yj-0.5)

xi!yj!
⌠
⌡

∞

0
η
yj-0.5

(1+η)
- xi-yj-0.5

(n 1+n 2η)
- 0.5
dη

=
Γ(xi+yj+0.5)

xi!yj!
T 0(xi,yj),

where T 0(xi,yj)=
⌠
⌡

∞

0
η
yj-0.5

(1+η)
- xi-yj-0.5

(n 1+n 2η)
- 0.5
dη . Therefore the 

EIBF of H 2  versus H 1  is given by

B
EI
21 =

S 2( x, y )

S 1( x, y )
⋅
ꀌ

ꀘ

︳︳︳

∑
i, j
T 1(xi,yj)/T 0(xi,yj)

∑
i, j
T 2(xi,yj)/T 0(xi,yj)

ꀍ

ꀙ

︳︳︳.

Note that the calculation of MIBF and EIBF of H 2  versus H 1  requires an one 

dimensional integration.
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4. Numerical Studies

In this section, we compare the proposed Bayesian test procedures with two 

frequentist methods. The frequentist methods are as follow.

The conditional test (C-test) due to Prizborowski and Wilenski (1940) is based 

on the conditional distribution of X 1  given X 1+X 2= k , where X 1= ∑
n 1

i=1
X 1i
 

and X 2= ∑
n 2

i=1
X 2i
 are the Poisson distributions with means n 1λ 1  and n 2λ 2 , 

respectively. Let k 1  and k 2  be the observed values of X 1  and X 2 . Note that 

the distribution of X 1  conditionally given X 1+X 2= k  is binomial with the 

number of trials k  and success probability

p( λ 1/λ 2)= (n 1 /n 2)(λ 1/λ 2)/[ 1+ (n 1 /n 2)(λ 1/λ 2)].               (8)

This conditional test rejects H 0:λ 1/λ 2≤c , whenever the p-values

p(X 1≥k 1∣k,p(c))= ∑
k

i= k 1 ( )
k
i
[p(c)]

i
[1-p(c)]

k- i
≤α,

where p(c)  is the expression in (8) with λ 1/λ 2  replaced by c .

The unconditional test (E-test) by Krishnamoorthy and Thomson (2004) is 

obtained by suitably modifying the binomial test due to Storer and Kim (1990). 

Since the unconditional test is essentially based on the estimated p-values of the 

standardized difference. The test  rejects H 0:λ 1-λ 2≤d , whenever the p-values

∑
∞

x 1= 0
∑
∞

x 2= 0

e
- n 1 ( λ

ˆ
2k+d)[n 1 ( λ̂ 2k+d)]

x 1

x 1!

e
- n 2 λ
ˆ
2k(n 2 λ̂ 2k )

x 2

x 2!
I[T x 1,x 2≥T k 1,k 2]≤α,

where I[⋅]  denotes the indicator function,

λ̂ 2k=
k 1+k 2
n 1+n 2

-
dn 1
n 1+n 2

, V̂ X=
X 1/n 1
n 1

+
X 2/n 2
n 2

,

T X 1,X 2
=
X 1/n 1-X 2 /n 2-d

V̂ X
, T k 1,k 2=

k 1/n 1-k 2 /n 2-d

V̂ k
.

For our purpose, we set η 0=1  in Bayesian hypotheses testing, then c=1  and 

d=0  in frequentist tests, respectively.
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Example 1. This example is given in Snedecor and Cochran (1980). An 

experiment designed to investigate various treatments for the control of cabbage 

loopers. Table 1 records the number of loopers on 50 cabbage plants per plot after 

the application of five treatments to each of four plots.

The posterior probabilities of H 1  being true are computed assuming equal prior 

probabilities. The p-value, value of the Bayes Factor and the posterior probability 

are given in Table 2. From Table 2, the frequentist tests are very conservative 

whereas the Bayes factors are not. That is, the frequentist tests are biased to H 1.  

Also with plot means, the fractional Bayes factor and the intrinsic Bayes factors 

give fairly reasonable answers. 

<Table 1> Number of Loopers on 50 Cabbage Plants in a Plot

Treatment Loopers per Plot Plot Mean

1

2

3

4

11,  4,  4,  5

 6,  4,  3,  6

 8,  6,  4, 11

 7,  4,  9, 14

6.00

4.75

7.25

8.50

<Table 2> p-value, Bayes Factor and Posterior Probability

Treatment p-value 

:C-Test
p-value

:E-Test
B
F
21
  B

MI
21
  B

EI
21 P

F
H 1
  P

MI
H 1
  P

EI
H 1

2  vs. 1 

2  vs. 3 

2  vs. 4

0.271

0.097

0.027

0.227

0.075

0.020

1.836   1.984   2.555

3.234   3.438   5.365

5.599   8.671  17.267

0.353   0.335   0.281

0.236   0.225   0.157

0.152   0.103   0.055

Example 2. To show that the frequentist tests are more biased than the 

Bayesian testing procedures, we examine the cases when (n 1 ,n 2)=(5,5), (k 1 ,k 2)=  

( 20, 21),( 20,22), ( 20,30)  and (n 1,n 2)= (5,10) , (k 1 ,k 2)= (20, 42), ( 20,44), ( 20,60) . 

<Table 3> p-value, Fractional Bayes Factor and Posterior Probability

(n 1 ,n 2) (k 1 ,k 2)
p-value

:C-Test
p-value

:E-Test
BF21    P

F
H 1

5,  5 

5, 10

20, 21

20, 22

20, 30

20, 42

20, 44

20, 60

0.500

0.439

0.101

0.488

0.418

0.069

0.444

0.385

0.080

0.438

0.370

0.055

1.116   0.473

1.243   0.446

2.775   0.265

1.024   0.494

1.142   0.467

2.560   0.281

For not so clear data, the C-test and E-test choose the hypothesis H 1  whereas 

the fractional Bayes factor chooses the hypothesis H 2. Therefore from this result, 
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frequentist tests are biased to H 1. However the fractional Bayes factor give fairly 

reasonable answers for all cases.
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