Journal of the Korean Data & Information Science Society 2006, Vol. 17, No. 2, pp. 499 ~ 505

A Note on the Minimal Variability OWA Operator Weights¹⁾

Dug Hun Hong²⁾

Abstract

In this note, we give an elementary simple new proof of the main result of Fuller and Majlender [Fuzzy Sets and systems 136 (2003) 203–215] concerning obtaining minimal variability OWA operator weights.

Keywords : Fuzzy sets, OWA operator

1. Introduction

Yager(1988) introduced a new aggregation technique based on the ordered weighted averaging(OWA) operators. An OWA operator of dimension n is a mapping $F: \mathbb{R}^n \to \mathbb{R}$ that has an associated weighting vector $W=(w_1, \dots, w_n)^T$ of having the properties $w_1 + \dots + w_n = 1$, $0 \le w_i \le 1$, $i=1,\dots, n$, and such that

$$F(a_1, \cdots, a_n) = \sum_{i=1}^n w_i b_i,$$

where b_j is the *j*th largest element of the collection of the aggregated objects a_1, \dots, a_n .

Yager(1988) introduced a measure of "orness" associated with the weighting vector W of an OWA operator, defined as

orness(W) =
$$\sum_{i=1}^{n} \frac{n-i}{n-1} w_{i}$$
,

¹⁾ This research is supported by 2004 research fund of Myongji University.

²⁾ Professor, Department of Mathematics, Myongji University, Yongin 449–728, Kyonggi, Korea

Dug Hun Hong

and it characterizes the degree to which the aggregation is like an $_{OT}$ operation. One important issue in the theory of OWA operators is the determination of the associated weights. A number of approaches have been suggested for obtaining the associated weights, i.e., quantifier guided aggregation(Yager(1988, 1993)), exponential smoothing(Filev and Yager(1988)) and learning(Yager and Filev(1999)). Another approaches, suggested by O'Hagan(1988), determines a special class of OWA operators having maximal entropy of the OWA weights for a given level of orness; algorithmically it is based on the solution of a constrained optimization problem. Recently, to obtain minimal variability OWA weights under given level of orness, *Fullér* and Majlender(2003) considered the following constrained mathematical programming problem

minimize
$$D^{2}(W) = \sum_{i=1}^{n} \frac{1}{n} (w_{i} - E(W))^{2} = \frac{1}{n} \sum_{i=1}^{n} w_{i}^{2} - \frac{1}{n^{2}}$$
.
subject to $orness(W) = \sum_{i=1}^{n} \frac{n-i}{n-1} w_{i} = a, \quad 0 \le a \le 1,$ (1)
 $w_{1} + \dots + w_{n} = 1, \quad 0 \le w_{i}, \quad i = 1, \dots, n,$

where $E(W) = (w_1 + \dots + w_n)/n$ stands for the arithmetic mean of weights. And they solved problem (1) analytically and derived the exact minimal variability OWA weights for any level of orness using the Kuhn-Tucker second-order sufficiency conditions for optimality. In this note, we give a simple new method deriving the exact minimal variability OWA weights for the problem (1).

2. New method obtaining minimal variability OWA weights

We first consider the following disjunctive partition of unit interval (0, 1) presented in (*Fullér* and Majlender(2003)):

$$(0,1) = \bigcup_{r=2}^{n-2} J_{r,n} \cup J_{1,n} \cup \bigcup_{s=2}^{n-2} J_{1,s},$$
(2)

where

$$\begin{split} J_{r,n} = & \left(1 - \frac{1}{3} \frac{2n + r - 2}{n - 1}, 1 - \frac{1}{3} \frac{2n + r - 3}{n - 1}\right], \quad r = 2, \cdots, \quad n - 1 \\ & J_{1,n} = \left(1 - \frac{1}{3} \frac{2n - 2}{n - 1}, 1 - \frac{1}{3} \frac{2n - 2}{n - 1}\right), \\ & J_{1,s} = \left[1 - \frac{1}{3} \frac{s - 1}{n - 1}, 1 - \frac{1}{3} \frac{s - 2}{n - 1}\right), \quad s = 2, \cdots, n - 1 \end{split}$$

Let us consider the constrained optimization problem (1) and suppose that $\alpha \in J_{r,s}$ for some r and s from partition (2). Such r and s always exist for any $\alpha \in (0, 1)$, furthermore, r = 1 or s = n should hold.

Fuller and Majlender(2003) proved that the weighting vector

$$W^* = (0, \dots, 0, w_r^*, \dots, w_s^*, 0, \dots, 0)$$

where

$$w_{j}^{*} = 0$$
 if $j \notin I_{\{r,s\}} = \{r, \cdots, s\},$ (3)

$$w_r^* = \frac{2(2s+r-2) - 6(n-1)(1-\alpha)}{(s-r+1)(s-r+2)}$$
(4)

$$w_s^* = \frac{6(n-1)(1-\alpha) - 2(s+2r-4)}{(s-r+1)(s-r+2)}$$
(5)

$$w_{j}^{*} = \frac{s-j}{s-r}w_{r}^{*} + \frac{j-r}{s-r}w_{s}^{*} \quad if \ j \in I_{\{r+1,s-1\}}$$
(6)

are the optimal solutions for problem (1). According to (6) of convex linear combination property, we have that $w_i^* = a^*i + b^*$ for $i \in I_{\{r,s\}}$ for some a^*, b^* . Using formulas (4) and (5) we find

$$w_r^*, \ w_s^* \in [0,1] \to \alpha \in \left[1 - \frac{1}{3}, \frac{2s + r - 2}{n - 1}, 1 - \frac{1}{3}, \frac{s + 2r - 4}{n - 1}\right].$$

Then, it is also easy to check that $a^*i + b^* \leq 0$ for $i \not\in I_{\{s,t\}}$. Hence, it is considered that *Fuller* and Majlender(2003) proved the following result.

Theorem ($Full \acute{e}r$ and Majlender(2003)) The optimal weight for the constrained optimization problem (1) should satisfy the equations

$$w_i^* = \begin{cases} a^*i + b^*, & \text{if } i \in I_{\{r,s\}} = \{r, \cdots, s\}, \\ 0, & \text{elsewhere.} \end{cases}$$

for some a^*, b^* satisfying $a^*i + b^* \le 0$ for $i \not\in I_{\{s,t\}}$ and r = 1 or s = n.

We now give a new simple proof of this theorem.

Dug Hun Hong

Proof. Let $w_i^* = a^*i + b^*$, $i \in I_{\{r,s\}} = \{r, \cdots, s\}$ and 0, otherwise satisfying

$$\sum i w_i^* = n - (n-1) \alpha \quad (\Leftrightarrow \sum_{i=1}^n \frac{n-i}{n-1} w_i = \alpha) \tag{7}$$

$$\sum w_i^* = 1, \ 0 \le w_i^*, \ i = 1, \cdots, n$$
(8)

and let $w_i, i = 1, \cdots, n$ satisfy

$$\sum_{i=1}^{n} iw_i = n - (n-1)\alpha, \tag{9}$$

$$\sum_{i=1}^{n} w_{i=1}, \ 0 \le w_i, \ i=1,\cdots,n.$$
(10)

We put $w_i = w_i^* + \beta_i$, $i = 1, \dots, n$. Then, noting that $w_i = \beta_{i, j}$ $i \notin I_{\{r,s\}}$, we have, from (8) and (10),

$$\sum_{i \notin T_{(r,s)}} w_i + \sum_{i \in T_{(r,s)}} \beta_i = \sum_{i=1}^n \beta_i = 0,$$
(11)

since $1 = \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} w_i^* + \sum_{i=1}^{n} \beta_i = 1 + \sum_{i=1}^{n} \beta_i$. We also have, from (7) and (9)

$$\sum_{i \notin T_{(r,s)}} iw_i + \sum_{i \in T_{(r,s)}} i\beta_i = \sum_{i=1}^n i\beta_i = 0, \qquad (12)$$

since $\sum_{i=1}^{n} i w_i = \sum_{i=1}^{n} i (w_i^* + \beta_i) = \sum_{i=1}^{n} i w_i^* + \sum_{i=1}^{n} i \beta_i$. We now show that

$$\sum_{i=1}^{n} w_i^2 \ge \sum_{i=1}^{n} w_i^{*2}.$$

502

It is because from (11) and (12)

$$\begin{split} &\sum_{i=1}^{n} w_{i}^{2} - \sum_{i=1}^{n} w_{i}^{2*} \\ &= \sum_{i=1}^{n} (w_{i}^{*} + \beta_{i})^{2} - \sum_{i=1}^{n} w_{i}^{2*} \\ &= 2\sum_{i=1}^{n} \beta_{i} w_{i}^{*} + \sum_{i=1}^{n} \beta_{i}^{2} \\ &= 2\sum_{i \in I_{(r,s)}} \beta_{i} (a^{*}i + b^{*}) + \sum_{i=1}^{n} \beta_{i}^{2} \\ &= 2a^{*} \sum_{i \in I_{(r,s)}} i\beta_{i} + 2b^{*} \sum_{i \in I_{(r,s)}} \beta_{i} + \sum_{i=1}^{n} \beta_{i}^{2} \\ &= 2a^{*} (-\sum_{i \notin I_{(r,s)}} iw_{i}) + 2b^{*} (-\sum_{i \notin I_{(r,s)}} w_{i}) + \sum_{i=1}^{n} \beta_{i}^{2} \\ &= -2\sum_{i \notin I_{(r,s)}} w_{i} (a^{*}i + b^{*}) + \sum_{i=1}^{n} \beta_{i}^{2} \\ &\geq \sum_{i=1}^{n} \beta_{i}^{2} \ge 0, \end{split}$$

where the fifth equality comes from (11) and (12), and the first inequality comes from the fact that $a^*i + b^* \le 0$ for $i \not\in I_{\{r,s\}}$, and hence we have

$$D^{2}(W) = \frac{1}{n} \sum_{i=1}^{n} w_{i}^{2} - \frac{1}{n^{2}} \ge \frac{1}{n} \sum_{i=1}^{n} w_{i}^{*2} - \frac{1}{n^{2}} = D^{2}(W^{*})$$

and the equality holds if and only if $W = W^*$ which completes the proof.

We now consider how to find a^* and b^* in the Theorem. We consider the following weight

$$w_i^* = \begin{cases} a^*i + b^*, & \text{if } i \in I_{\{r,s\}} = \{r, \cdots, s\}, \\ 0, & \text{elsewhere,} \end{cases}$$

for some a^* and b^* satisfying

$$\sum i w_i^* = n - (n-1)\alpha \quad (\Leftrightarrow \sum_{i=1}^n \frac{n-i}{n-1} w_i^* = \alpha) \tag{13}$$

$$\sum w_i^* = 1, \ 0 \le w_i^*, \ i = 1, \cdots, n.$$
(14)

From $\left(13\right)$ and $\left(14\right)$, we have

$$a^* \sum_{i=r}^{s} i + (s - r + 1) b^* = 1,$$

$$\sum_{i=r}^{s} i (a^* i + b^*) = n - (n - 1) \alpha.$$

Since
$$\sum_{i=r}^{s} i = \frac{(r+s)(s - r + 1)}{2}, \sum_{i=r}^{s} i^2 = \frac{s(s+1)(2s+1) - (r - 1)r(2r - 1)}{6},$$

we have

we have

$$\frac{(r+s)(s-r+1)}{2}a^* + (s-r+1)b^* = 1$$

$$\frac{s(s+1)(2s+1) - (r-1)r(2r-1)}{6}a^* + \frac{(r+s)(s-r+1)}{2}b^* = n - (n-1)a.$$

Hence , we have by Cramer's rule

$$a^{*} = \frac{\begin{vmatrix} 1 & s - r + 1 \\ n - (n - 1)a & (r + s)(s - r + 1) \\ 2 & s - r + 1 \end{vmatrix}}{\begin{vmatrix} -(r + s)(s - r + 1) \\ 2 & s - r + 1 \end{vmatrix}}$$
$$= \frac{-6(r + s - 2n + 2na - 2a)}{(s - r + 1)(r - s)(s - r + 2)},$$
$$= \frac{-6(r + s - 2n + 2na - 2a)}{(s - r + 1)(r - s)(s - r + 2)},$$
$$b^{*} = \frac{\begin{vmatrix} -(r + s)(s - r + 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s + 1)(2s + 1) - (r - 1)r(2r - 1) \\ -s(s - r + 1) \\ -s(s - r + 1)(r - s)(s - r + 2) \\ -s(s - r + 1)(r - s)(s - r + 1)(r - s)(s - r + 2) \\ -s(s - r + 1)($$

504

Then, from the equality $w_i^* = a^*i + b^*, i = r, \dots, s$, we can get

$$w_{j}^{*} = 0 \quad \text{if} \quad j \notin I_{\{r,s\}},$$

$$w_{r}^{*} = a^{*}r + b^{*} = \frac{-2(2s + r - 2) - 6(n - 1)(1 - a)}{(s - r + 1)(s - r + 2)}$$

$$w_{s}^{*} = a^{*}s + b^{*} = \frac{-6(n - 1)(1 - a) - 2(s + 2r - 4)}{(s - r + 1)(s - r + 2)}$$

$$w_{j}^{*} = a^{*}j + b^{*} = \frac{s - j}{s - r} w_{r}^{*} + \frac{j - r}{s - r} w_{s}^{*} \quad \text{if} \quad j \in I_{\{r+1, s-1\}}.$$

References

- 1. Filev, D. and Yager, R. R.(1988). On the issue of obtaining OWA operator weights, *Fuzzy Sets and Systems*, 94, 157-169.
- 2. Fuller, R. and Majlender, P.(2003). On obtaining minimal variability OWA operator weights, Fuzzy Sets and Systems, 136, 203–215.
- 3. Hagan, M. O'.(1988) Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic, *in:Proc. 22nd annual IEEE Asilomar Conf. on Signals, Systems , Computers, Pacific Grove, CA*, 681-689.
- Yager, R. R.(1988). Ordered weighted averaging aggregation operators in multi-criteria decision making, *IEEE Trans. Systems Man Cybernet.* 18, 183–190.
- 5. Yager, R. R.(1993). Families of OWA operators, *Fuzzy Sets and Systems*, 59, 125-148.
- Yager, R.R. and Filev, D.(1999). Induced ordered weighted averaging operators, *IEEE Trans. Systems, Man Cybernet. -Part B:Cybernetics*, 29, 141–150.

[received date : Feb. 2006, accepted date : Mar. 2006]