DOI QR코드

DOI QR Code

Local Laser Annealing in Exchange-Biased Films with Out-of-Plane and In-Plane Magnetic Anisotropy

  • Choi, S.D. (Department of Physics, Dankook University) ;
  • Kim, S.W. (Department of Computer and Electronic Physics, Sangji University) ;
  • Jin, D.H. (Department of Physics, Dankook University) ;
  • Yun, D.K. (Department of Physics, Dankook University) ;
  • Lee, M.S. (Department of Physics, Dankook University) ;
  • Ahn, J.H. (Department of Physics, Dankook University) ;
  • Joo, H.W. (Department of Physics, Dankook University) ;
  • Lee, K.A. (Department of Physics, Dankook University) ;
  • Lee, S.S. (Department of Computer and Electronic Physics, Sangji University) ;
  • Hwang, D.G. (Department of Computer and Electronic Physics, Sangji University)
  • Published : 2006.06.01

Abstract

Local magnetization reversal in the exchange-biased NiFe/FeMn and $[Pd/Co]_5/FeMn$ multilayers with in-plane and out-of-plane magnetic anisotropy was achieved by using laser annealing. The local annealed NiFe/FeMn film under the opposite magnetic field shows a magnetoresistance (MR) curve having two symmetric peaks at the positive and negative exchange biasing field (${\pm}H_{ex}$). The intensity of the nucleated MR peak rises as the exposed area extends during the laser annealing process, and the peak disappears under the reverse magnetic field. In the case of [Pd/Co]/FeMn films, the local magnetization reversal increased gradually as the laser power increases. The locally reversed magnetization was restored under the opposite magnetic field.

Keywords

References

  1. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science, 285, 867 (1999) https://doi.org/10.1126/science.285.5429.867
  2. J. Fassbender, D. Ravelosona, and Y. Samson, J. Phys. D, 37, 179 (2004) https://doi.org/10.1088/0022-3727/37/16/R01
  3. J. Nogues and Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999) https://doi.org/10.1016/S0304-8853(98)00266-2
  4. R. L. Stamps, J. Phys. D, 33, 247 (2000) https://doi.org/10.1088/0022-3727/33/23/201
  5. H. W. Zhao, W. N. Wang, Y. J. Wang, W. S. Zhan, and J. Q. Xiao, J. Appl. Phys. 91, 6893 (2002) https://doi.org/10.1063/1.1447186
  6. P. Milteny, M. Gierlings, M. Bamming, U. May, G. Guntherodt, J. Nogues, M. Gruyters, C. Leighton, and Ivan K. Shuller, Appl. Phys. Lett. 75, 2304 (1999) https://doi.org/10.1063/1.124998
  7. S. Soeya, T. Imagawa, K. Mitsuoka, and S. Narishige, J. Appl. Phys. 76, 5356 (1994) https://doi.org/10.1063/1.358488
  8. H. W. Joo, S. W. Kim, J. H. An, J. H. Choi, M. S. Lee, K. A. Lee, D. G. Hwang, and S. S. Lee, 10(1), 33 (2005) https://doi.org/10.4283/JMAG.2005.10.1.033