DOI QR코드

DOI QR Code

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C. (Department of Physics & Astronomy, University of Victoria) ;
  • Hong, Y.K. (Department of Materials Science and Engineering, University of Idaho) ;
  • Rudge J. (Department of Physics & Astronomy, University of Victoria) ;
  • Donohoe G. (Department of Electrical and Computer Engineering, University of Idaho) ;
  • Xiao Q.F. (Department of Physics & Astronomy, University of Victoria)
  • Published : 2006.06.01

Abstract

The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Keywords

References

  1. K. Y. Guslienko et al., Phys. Rev. Lett. 96, 67205 (2006) https://doi.org/10.1103/PhysRevLett.96.067205
  2. T. Devolder et al., Appl. Phys. Lett. 86, 62505 (2005)
  3. D. Chumakov et al., Phys. Rev. B 71, 14410 (2005) https://doi.org/10.1103/PhysRevB.71.014410
  4. A. Neudert, J. MvVord, R. Schaefer, and L. Schultz, J. Appl. Phys. 97, 10E701 (2005) https://doi.org/10.1063/1.1850832
  5. J. Vogel et al., Phys. Rev. B 72, 220402(R) (2005) https://doi.org/10.1103/PhysRevB.72.220402
  6. V. V. Kruglyak et al., Phys. Rev. B 71, 220409(R) (2005) https://doi.org/10.1103/PhysRevB.71.220409
  7. B. C. Choi, J. Ho, G. Arnup, and M. R. Freeman, Phys. Rev. Lett. 95, 237211 (2005) https://doi.org/10.1103/PhysRevLett.95.237211
  8. S. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, and H. A. Padmore, Science 304, 420 (2004) https://doi.org/10.1126/science.1095068
  9. C. M. Schneider et al., Appl. Phys. Lett. 85, 2562 (2004) https://doi.org/10.1063/1.1790606
  10. B. C. Choi, G. E. Ballentine, M. Belov, W. K. Hiebert, and M. R. Freeman, Phys. Rev. Lett. 86, 728 (2001) https://doi.org/10.1103/PhysRevLett.86.728
  11. B. Heinrich and J. A. C. Bland (Eds.), 'Ultrathin Magnetic Structures', Springer Verlag, (1994-2005)
  12. S. W. Yuan and H. N. Bertram, J. Appl. Phys. 73, 5992 (1993) https://doi.org/10.1063/1.353497
  13. M. N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988) https://doi.org/10.1103/PhysRevLett.61.2472
  14. A. F. Popkov, L. L. Savchenko, N. V. Vorotnikova, S. Tehrani, and J. Shi, Appl. Phys. Lett. 77, 277 (2000) https://doi.org/10.1063/1.126949
  15. K. J. Kirk, J. N. Chapman, and C. D. W. Wilkinson, Appl. Phys. Lett. 71, 539 (1997) https://doi.org/10.1063/1.119602
  16. J. M. Daughton et al., Thin Solid Films 216, 162 (1992) https://doi.org/10.1016/0040-6090(92)90888-I
  17. W. J. Gallagher et al., J. Appl. Phys. 81, 3741 (1997) https://doi.org/10.1063/1.364744
  18. W. F. Brown, Micromagnetics. New York, Wiley (1963)
  19. W. F. Brown, Phys. Rev. 130, 1677 (1963) https://doi.org/10.1103/PhysRev.130.1677