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Decision of Lubricated Friction Conditions for Materials
of Automobile Transmission Gear Using Neural Network

Yon-Sang Cho, Heung-Sik Park”
Department of Mechanical Engineering, Dong-A University,
Hadandong 840, Busan 604-714, Korea

It is hard to inspect the state of lubrication of an automobile transmission visually. Thus, it

is necessary to develop a new inspection method. Wear debris can be collected from the lubri-

cants of an operating transmission of an automobile, and its morphology will be directly related

to the friction condition of the interacting materials from which the wear debris originated in
the lubricated transmission. In this study, wear debris in lubricating oil are extracted by mem-
brane filter (0.45 m), and the quantitative values of shape parameters of wear debris are calcu-

lated by digital image processing. These shape parameters are studied and identified by an arti-
ficial neural network algorithm. The results of the study may be applicable to the prediction and
diagnosis of the operating condition of transmission gear.
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1. Introduction

The nitrocarburizing process for surface modi-
fication of transmission gear has a low cost and
a small deformation because the treatment tem-
perature is lower than in the carburizing process
(Dawes and Tranter, 1982 ; Dawes, 1991). Wear
resistance and fatigue strength of transmission
gears are very important because of the presence
of friction and wear between elements and the oc-
currence of fatigue fracture around surfaces re-
sulting from the repeated load. In order to deter-
mine the suitability of this heat treatment, it is
necessary to develop a method for diagnosing
wear resistance.

One general method for doing this is to measure
the vibration of a transmission gear in action and
the torque between the input and output shafts.
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Following the test, the transmission is disassem-
bled to observe directly damage to the gear such
as a pitting and scoring (Ko, 1984). The draw-
back is that it takes such a long time to diagnose
the failure of the transmission gear, and an expert
engineer, or at least expert knowledge, is needed,
since these qualitative data are so difficult to
analyze exactly. What is required, therefore, is to
develop a new method such as lubricant or wear
debris analysis for assessing the condition of
transmission gear (Sato et al., 1987 ; Ahn, 1992 ;
Hunt, 1996).

In this study, to get the basic information for
the diagnosis of transmission gear condition, a lu-
bricated friction experiment was carried out with
carburized SCM420 and nitrocarburized NT100
used as the material of transmission gears of au-
tomobile. Wear debris was extracted from the
lubricants, and the shape parameters of this de-
bris, which are related to the moving condition,
were calculated by the image processing system
(Uedelhoven and Franzl, 1991 ; Roylance et al.,
1993). A neural network (Sugimura and Yamamoto,
1995 ; Park, 1995) was then constructed to iden-
tify and classify shape characteristics of the wear
debris.



584 Yon-Sang Cho and Heung-Sik Park

2. Experimental Detail

2.1 Lubricated friction experiment

A ball-on-disk type wear test, as shown in Fig.
1, was carried out under different experimental
conditions. A ball specimen contacted with a disk
specimen. The ball was ceramic with a diameter
of 4.76 mm, and the disk specimens were of the
two materials used for the transmission gear,
carburized SCM420 and nitrocarburized NT100.

They were 50 mm in diameter, 10 mm in width
and ground as Rmax 0.2 um. The lubricants
were SAE75W gear otil, and its characteristics are
shown in Table 1. The applied loads were set up
at 2.5kg, Skg, 7.5kg and 10 kg, and the sliding
speeds were 47 mm/sec, 94 mm/sec, 141 mm/sec

]
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Fig. 1 Photograph of ball on disk type wear tester

Table'l Characteristics of gear oil

Characteristics Shell T/M
(SAE 75W/85)
Specific gravity 15/4°C 0.8769
Viscosit 40C ST 61.36
osiy 100C ST 12.12
Sulfur content (%) 0.864
Phosphorous content {%) 0.0468

Table 2 Experiment conditions

Experiment condition

Applied load (kg) 2.5, 5.0, 7.5, 10.0

Sliding speed (mm/sec) 47, 94, 141, 188

Sliding distance (m) 1018

and 188 mm/sec, as shown in Table 2. Wear
debris was extracted from the lubricant with a
membrane filter of 0.45 gm (a 0.45 um membrane
filter) and the morphological characteristics of
the wear debris were calculated by image process-
ing.

2.2 Digital image processing

Digital image processing (Roylance et al., 1993)
was used to recognize and classify the shape of
wear particles generated in the transmission gear.
In order to describe the characteristics of wear
debris of various shapes and sizes, the four shape
parameters of wear particles are defined as 50%
volumetric diameter, aspect, roundness and re-
flectivity. 50% volumetric diameter is a represent-
ative size of wear debris. It is defined the dia-
meter of particle to the half of total volume in
ascending order. Aspect- is defined as length/
width of particle and gives a larger vale for long
particle. Roundness is to measure the smoothness
of a particle’s border. This gives unity for a cir-
cular particle, and larger values for irregular par-
ticles.

Figure 2 shows a flow chart of the image
processing algorithm that was used to obtain the
shape parameters of wear debris taken in the ex-
periment. Reflected and transmitted images were
captured by a color CCD camera on an optical
microscope with reflected and transmitted halo-
gen lights, and these were saved to HDD (hard
disk drive) by a frame grabber within the com-
puter. The resolution of image was 640X480
pixels, and the grayscale was 8 bit per pixel. The
optical microscope had an objective and ocular
lens with a magnification of 10X. The reflected
and transmitted images were captured though the
frame grabber. The transmitted images were trans-
formed into a threshold image with threshold
value selected from the histogram. The reflected
images were added to the threshold image, and
then, the boundary and shape of wear debris were
extracted through image processing and the four
shape parameters were calculated. In this study,
20 transmitted and reflected images were captur-
ed and processed to get the shape data of wear
debris.
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Fig. 2 Image processing algorithm
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Fig. 3 Model of neural network

2.3 Construction of neural network

Figure 3 is a diagram of the multi-layer neural
network model {Sugimura and Yamamoto, 1995).
The network consists of input layer, hidden layer
and output layer. The input data were 50% vol-
umetric diameter, aspect, roundness and reflec-
tivity, i.e. the shape parameters of the wear debris.
In the output layer, responses were outputted for
the two materials, four conditions of applied load,
and four conditions of sliding speed.

Figure 4 shows the neural network program
made with Visual C++. The neural network learn-
ed the 32 learning patterns that consisted of the
average value of the 4 shape parameters of wear
debris as input data and the several operating
conditions of the experiments as target values.
Learning error was less than 0.0001, and the
learning iterative number was set up at more than
500,000.
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Fig. 4 Neural network program
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Figure 5 shows the variation of the learning
error as a function of the number of units in one
hidden layer. In this graph, the learning error has
a minimum value when the number of units is
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60, and as shown in Fig. 6, the learning error is
smallest when the number of hidden layers is one.
Therefore, the neural network was optimized with
60 units of one hidden layer.

3. Results and Discussion

3.1 Shape characteristics of wear debris

Figure 7 shows thé average value of 4 shape
parameters on applied loads at sliding speed of
188 mm/sec. It shows that with an increase of ap-
plied loads, 50% volumetric diameter, aspect and
roundness of all materials increase. This means
that wear debris becomes larger and more com-
plex in shape as the load increases. The decrease
in reflectivity is considered to be due to a reaction
of oxidation with the increase in average tempera-
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ture of the rubbed surface. Photographs of wear
debris on applied load for carburized SCM420
are shown in Fig. 8. From these photographs, it
can be know that the shape characteristics of the
wear debris are different on operating condition.
Fig. 9 shows the average value of the 4 shape
parameters on sliding speed when the applied
load is 7.5 kg. With a decrease in sliding speed,
wear debris particles are comparatively large and
glossy, as all 4 shape parameters have high values.

In sum, Figs. 7 and 9 indicate that the mor-
phological characteristics of the wear debris on
operating condition such as shown in Fig. 8 can
be classified by the average value of the 4 shape
parameters. These parameters were used for the
study data of the neural network.

3.2 Groups of wear debris

Because the shape characteristics of each parti-
cle of wear debris occurring in the moving system
are widely distributed and varied, it is difficult to
apply the neural network directly to identifying
the characteristics of the wear debris. Therefore,

in order to identify the shape characteristics, it
is useful to use the properties of a suitable num-
ber of particles and find an average value for
the shape parameters for that small group. In this
study, average values of the shape parameters
were calculated in every 50 and every 100 wear
debris group. Because, small groups could not be
made with over that by reason that wear debris in
image were small in number.

Figure 10 shows the distribution of average
values of the shape parameters in (a) every 50
and (b) every 100 wear debris group at an appli-
ed load of 7.5 kg and a sliding speed of 97 mm/
sec. The figure shows that the distributions of
the shape parameters in (b) every 100 wear debris
group are separated much better than in (a) every
50, so the decision rate in the neural network is
expected to be high for materials when the dis-
tribution of the parameters in every 100 wear
debris group is used.

Figure 11 shows the distribution of average

-value of the shape parameters in every 100 wear

debris group of (a) carburized SCM420 and
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Fig. 10 Average value of shape parameters in every 50 and 100 wear debris groups for two materials (applied
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(b) nitrocarburized NT100 for the different ap-
plied loads at a sliding speed of 47 mm/sec. In
(a) carburized SCM420, the distribution of 50%
volumetric diameter and the reflectivity overlap a
little, while aspect and roundness almost over-
lap. In the case of (b) nitrocarburized NT100, the
shape parameters partly overlap. Based on these
results, the decision rate in the neural network is
expected to be somewhat low for the applied load.

Figure 12 shows the distribution of the average
value in every 100 wear debris group for different
sliding speeds at an applied load of 2.5 kg. The
distribution of shape parameters in (a) carburiz-
ed SCM420 overlaps more than in (b) nitrocar-
burized NT100. Therefore, the decision rate on
sliding speed is also expected to be lower in car-
burized SCM420 than in nitrocarburized NT100.

3.3 Identification of shape characteristics
of wear debris
Figures 13 and 14 show the decision rate of
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Fig. 14 Average decision rate for frictional condi-
tion in every 100 particle group

neural network for the friction conditions. The
decision rate for the material is over 80% in every
100 particle group, because the distribution of the
shape characteristics for the materials is com-
paratively more separated, as shown in Fig. 11. In
identifying the friction condition of the transmis-
sion gear, it is therefore more effective to use the
average values of shape parameters in every 100
wear particle than in every 50 particle grouping
order to distinguish the shape characteristics of
wear debris using computer image processing.

In these results, although the distributions over-
lap, if the average values of shape parameters for
wear debris groups are investigated overall, the
shape characteristics for the different operating
conditions can be clearly identified. Moreover,
the various operating conditions can be recogniz-
ed by using the neural network with the optimum
condition.

4. Conclusions

To identify the friction condition for a trans-
mission gear using a neural network, a ball-on-
disk type wear test was carried out for carburized
SCM420 and nitrocarburized NT100 under dif-
ferent experimental conditions. The four shape
parameters (50% volumetric diameter, aspect, round-
ness and reflectivity) of wear debris were calcu-
lated using image processing, and these were used
as input values to identify the moving condition
of the transmission gear using a neural network.
The present study indicates that to distinguish the
shape characteristics of wear debris, it is more
effective to use the average values of the 4 shape
parameters in every 100 wear debris group than in
every 50 as the input values for the neural net-
work. Further, the most suitable neural network
has one hidden layer and 60 units in a hidden
layer, and for the identification of the morpho-
logical characteristics of wear debris, it is most
effective to set up the average values of the 4
shape parameters of all wear debris into the learn-
ing condition. By means of the neural network
used in this study, it is possible to predict and to
decide lubricated friction conditions of materials
for the transmission gear of an automobile.
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