감마선 조사를 이용한 유기질 퇴비의 병원성 미생물 저감화

Reduction of Pathogenic Bacteria in Organic Fertilizer using Gamma-Irradiation

  • 윤혜정 (한국원자력연구소 방사선연구원) ;
  • 임상용 (한국원자력연구소 방사선연구원) ;
  • 송현파 (한국원자력연구소 방사선연구원) ;
  • 김병근 (한국원자력연구소 방사선연구원) ;
  • 정진우 (한국원자력연구소 방사선연구원) ;
  • 김동호 (한국원자력연구소 방사선연구원)
  • Yun Hye-Jeong (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Lim Sang-Yong (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Song Hyun-Pa (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Kim Byeong-Keun (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Chung Jin-Woo (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Kim Dong-Ho (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute)
  • 발행 : 2006.04.01

초록

시판 유기질 퇴비(우분, 돈분, 계분 및 혼합분) 16종의 총 호기성 세균수, 대장균 및 대장균군 그리고 Salmonella에 대한 미생물 오염도를 파악하고, 미생물 오염도 저감화 및 위생성 향상을 위해 감마선을 조사한 후 미생물 사멸도를 측정하였다. 총 호기성 세균수는 우분, 돈분, 계분 및 혼합분의 경우 $10^4{\sim}10^\;CFU/g$으로 유의적인 차이를 나타내지 않았다. 대장균군은 16종의 시료 중 12종의 시료에서 $10^1{\sim}10^3\;CFU/g$의 분포를 나타내었고, 대장균은 3종의 시료에서 $10^1{\sim}10^2\;CFU/g$의 분포를 나타내었다. 또한 SS agar plate 분리 enteric group 미생물은 계분제품 중 1종에서만 검출되었다. 한편 총 호기성세균은 10 kGy 감마선 조사에 의해서 평균 4 log cycle 감소하였으며, 대장균군은 5 kGy 감마선 조사시 완전살균 수준의 감소효과를 나타내었다. E. coli와 SS agar plate 분리 enteric group은 3 kGy 감마선 조사에 의해 완전 사멸되었다. 유기질 퇴비 분포 미생물의 D값은 SS agar plate 분리 enteric group은 0.40 kGy, E. coli는 0.39 kGy의 범위를 나타내었다. 시판 유기질 퇴비는 3 kGy 수준에서 축분뇨발효 비료액의 병원성 미생물 공정규정을 충족할수 있으며, 위생화를 위해서는 5 kGy 수준으로 설정하는 것이 바람직할 것으로 사료된다.

Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm produce because most of the compose are originated from excrementitious matters of domestic animals. Irradiation was performed to improve microbiological safety of organic compost and the effectiveness of gamma-irradiation for inactivating Salmonella typhimurium and E. coli was investigated. Total aerobic bacteria and coliform bacteria in 16 produce or commercial compose were ranged from $10^5\;to\;10^7\;CFU/mL\;and\;0\;to\;10^3\;CFU/mL$, respectively. All coliform bacteria in the composts were eliminated by irradiation at 5 kGy, while about $10^2\;CFU/mL$ of total aerobic bacteria survived up to 10 kGy of irradiation. In the inoculation test the test organisms (inoculated at $10^7\;CFU/mL$) were eliminated by irradiation at 3 kGy. $D_{10}$ values of inoculated Salmonella typhimurium and E. coli in the compost were $0.4{\pm}0.05\;and\;0.39{\pm}0.03kGy$. It was considered that $3{\sim}5kGy$ of gamma irradiation was effective for radicidation (radiation sterilization of pathogenic microbes) of organic fertilizer.

키워드

참고문헌

  1. Kim, C.G. (2003) Evaluation and project on support polices for improvement in environmentally friendly agriculture. Proceedings of symposium for evaluation and development on policies of environmentally friendly agriculture. Agriculture, Fisheries & Livestock News, 5-19
  2. Khan, R.A. and Saxena, S.K. (1997) Intergrated management of root knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces liacininus. Bioresource Technol., 61, 247-250 https://doi.org/10.1016/S0960-8524(97)00024-2
  3. Sailfullah, A.G. and Zulfiqar. (1990) Promising control of root-knot nematodes (Meloidogyne spp.) of tomato through organic amendments. J. Agric., 6, 417-420
  4. Saifullah, A.G. and Shah, S.F.A. (1990) Control of root-knot nematodes in tomato through organic amendments and NPK. Sarhad J. Agric., 6, 95-97
  5. Weon, H.Y., Kwon, J.S., Suh, J.S. and Choi, W.Y. (1999) Soil microbial flora and chemical properties as influenced by the application of pig manure compost. J. Korean Soc. Soil Sci. Fert., 32, 76-83
  6. 신항식 (1996) 퇴비관련 법제 및 제품 표준화 연구. 음식물쓰레기 등 한국형 유기성 폐기물 자원화 연구개발사업 보고서, 한국자원재생공사
  7. Bagstam, G. (1979) Population changes in microorganisms during composting of spruce-bark II. Mesophilic and thermophilic microorganisms during controlled composting. J. Apple. Microbiol. Biotechnol., 6, 279-288 https://doi.org/10.1007/BF00508100
  8. Falcon, M.A., Corominas, E., Perez, M.L. and Perestelo, F. (1987) Aerobic bacterial populations and environmental factors involved in the composting of agricultural and forest wastes of the canary islands. Biological Wastes, 20, 89-99 https://doi.org/10.1016/0269-7483(87)90159-5
  9. Molnar, L. and Bartha, I. (1988) High solids anaerobic fermentation for biogas and compost production. Biomass, 16(3), 173-182 https://doi.org/10.1016/0144-4565(88)90090-X
  10. Chino, M., Kanazawa, S., Mori, T., Araragi, M. and Kanke, B. (1983) Biochemical studies or com posting of municipal sewage sludge mixed with rice hull. Soil Sci. Plant Nutr., 29, 159-173 https://doi.org/10.1080/00380768.1983.10432417
  11. Pare, T., Dinel, H., Schnitzer, M. and Dumonte, S. (1998) Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol, Fertil. Soils, 26, 173-178 https://doi.org/10.1007/s003740050364
  12. Lo, K.V., Lau, A.K. and Liao, P.H. (1993) Composting of separated solid swine wastes. J. Agric. Eng. Res., 54, 307-317 https://doi.org/10.1006/jaer.1993.1023
  13. Lee, J.T., Nam, Y.G. and Lee, J.I. (2001) Changes of physico-chemical properties and mieroflora of pig manure due to composting with some bulking agents. J. Korean Soc. Soil. Sci. Fert., 34, 134-144
  14. Boutin, P. and Moline, J. (1987) Health and safety aspects of compost preparation and use, compost : production, quality and use. Elsevier Applied Science, p. 198-209
  15. Zucconi, F. and Bertoldi, M.D. (1987) Specification for solid waste compost. Biocycle, 28 (May-June), 56-61
  16. Goldstein, N., Yanko, W.A., Walker, J.M. and Jakubowski, W. (1988) Determining pathogen levels in sludge products. Biocycle, 29, 44-47
  17. Burge, W.D., Cramer, W.N. and Epstein, E. (1978) Destruction of pathogens in swage sluge by composting. Trans. ASAE, 510-514
  18. Byun, M.W. and Yook, H.S. (2003) Internal and external situation of irradiation technology utilization in the food and public health industry. Korean J. of Food Preservation, 10, 106-123
  19. Niemira, B.A., Sommers, C.H. and Boyd, G. (2001) Irradiation inactivation of four Salmonella serotypes in orange juices with various turbidities. Journal of Food Protection. 64. 614-617 https://doi.org/10.4315/0362-028X-64.5.614
  20. Sawai, T., Yamazaki, M., Shimokawa, T., Sekiguchi, M. and Sawai, T. (1990) Improvement of sedimentation and dewatering of municipal sludge by radiation. Radiation Physics and Chemistry, 35, 465-468 https://doi.org/10.1016/1359-0197(90)90140-D
  21. The Korea Food and Drug Administration. (2003) Food Standard Code, Seoul
  22. AOAC. (1995) Official methods of Analysis, 16th ed., Association of Official Analytical Chemists, Washington, DC, USA
  23. Kim, D.H., Song, H.P., Yook, H.S., Chung, Y.J., Kim, Y.J. and Byun, M.W. (2002) Distribution of microflora in powdered raw grains and vegetables and improvement of hygienic quality by gamma irradiation. J. Korean Soc. Food Sci. Nutr., 31, 589-593 https://doi.org/10.3746/jkfn.2002.31.4.589
  24. Whang, K.S. and Chang, K.W. (1996) Change of microflora in livestock manure during composting process. J. Korean Soc. Soil. Sci. Fert., 29, 303-311
  25. Hussang, D., Burge, D. and Enkiri, N. (1985) Occurrence, growth and suppression of Salmonella in composed sewage sludge. Apple. Env. Microbiol., 50, 887-893
  26. Millner, P.D., Powers, K., Enkiri, N. and Burge, W. (1987) Microbially mediated growth suppression and death of Salmonella in composed sewage sludge. Microb. Ecol., 14, 255-265 https://doi.org/10.1007/BF02012945
  27. Haumulv, B.G. and Snygg, B.G. (1973) Radiation resistance of spores of Bacillus subtilis and B. stearothermophilus at various water activities. J. Appl. Bacteriol., 36, 677-682 https://doi.org/10.1111/j.1365-2672.1973.tb04152.x
  28. Briggs, A. (1966) The resistance of spores of the genus Bacillus to phenol, heat and radiation. J. Applied Bacteriology, 29, 490-504 https://doi.org/10.1111/j.1365-2672.1966.tb03500.x
  29. Maxcy, R.B. and Tiwari, N.P. (1973) Irradiation of meats for public health protection. In Radiation preservation of food. International Atomic Energy Agency, Vienna, 491-504
  30. FAO/IAEA/WHO Study Group. High-dose irradiation (1999) Wholesomeness of food irradiated with doses above 10 kGy. In WHO technical report series 890. World Health Organization, Geneva, 49-77