Reduction of Bacillus cereus in Cooked Rice Treated with Sanitizers and Disinfectants

  • Lee Min-Jeong (Department of Food Science and Technology/BET Research Institute, Chung-Ang University) ;
  • Bae Dong-Ho (Division of Bioscience & Biotechnology, Konkuk University) ;
  • Lee Dong-Ha (Korea Food and Drug Administration) ;
  • Jang Ki-Hyo (Department of Food and Nutrition, Kangwon National University) ;
  • Oh Deog-Hwan (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Ha Sang-Do (Department of Food Science and Technology/BET Research Institute, Chung-Ang University)
  • Published : 2006.04.01

Abstract

This study aimed to identify effective washing and sanitation programs to minimize the contamination of cooked rice by B. cereus. As such, the effectiveness of five sanitizers, including QAC, alcohol, chlorine, CaO, and $H_2O_2$, was evaluated in relation to the survivability of B. cereus spores in cooked rice and resulting sensory properties of the rice. The water-treated cooked rice showed remaining B. cereus spores at 1.09 $log_{10}CFU/g$. In contrast, treatment with the minimum inhibitory concentrations of the sanitizers, such as 200 ppm of QAC, 50% of alcohol, 100 ppm of chlorine, 650 ppm of CaO, and 500 ppm of $H_2O_2$, destroyed all the spores in the cooked rice below a non-detection limit (ND< 0.15 CFU/g). The sensory properties of the sanitizer-treated (1,000 ppm of $H_2O_2$, 100 ppm of chlorine, and 800 ppm of CaO) cooked rice did not differ significantly from those of the water-treated cooked rice. As a result, 500 ppm of $H_2O_2$, 650 ppm of CaO, and 100 ppm of chlorine were found to effectively eliminate B. cereus spores in rice while cooking.

Keywords

References

  1. Andersson, A., U. Rönner, and P. E. Granum. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 145-155 https://doi.org/10.1016/0168-1605(95)00053-4
  2. Atri, N. and L. C. Rai. 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotechnol. 13: 544-551
  3. Berghofer, L. K., A. D. Hocking, D. Miskelly, and E. Jansson. 2003. Microbiology of wheat and flour milling in Australia. Int. J. Food Microbiol. 85: 137-149 https://doi.org/10.1016/S0168-1605(02)00507-X
  4. Cho, J. H., C. H. Lee, and H. S. Lee. 2005. Antimicrobial activity of quinoline derivatives isolated from Ruta chalepensis toward human intestinal bacteria. J. Microbiol. Biotechnol. 15: 646-651
  5. The European Committee for Standardization. 2001. Sporicidal Activity. prEN 14347. British Standards Institution
  6. Finlay, W. J. J., N. A. Logan, and A. D. Sutherland. 2002. Bacillus cereus emetic toxin production in cooked rice. Food Microbiol. 19: 431-439 https://doi.org/10.1006/fmic.2002.0505
  7. Granum, P. E. and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223- 228 https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  8. Jang, J. H., J. S. Jang, S. Y. Lee, H. S. Kim, and J. H. Park. 2003. Growth inhibition effects of ethanol and sodium chloride on Bacillus cereus. Kor. J. Food Sci. Technol. 35: 998-1002
  9. Jang, J. S., J. M. Go, and Y. H. Kim. 2005. Inhibitory effect of Staphylococcus aureus and Bacillus cereus by lactic acid and hydrogen peroxide. Kor. J. Env. Hlth. 31: 115-119
  10. Jang, T. E., J. S. Han, O. J. Song, D. H. Chung, and I. S. Shin. 2004. Study on reducing methods of natural foodborne pathogenic microorganisms originated from Saengshik. Kor. J. Food Sci. Technol. 36: 1020-1025
  11. Jensen, G. B., B. M. Hansen, and J. Eilenberg. 2003. The hidden lifestyle of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640 https://doi.org/10.1046/j.1462-2920.2003.00461.x
  12. Jun, S., I. Hideo, H. Atsushi, K. Takao, and S. Masaru. 1995. Effect of ceramic powder slurry on spores of Bacillus subtilis. J. Chem. Eng. Japan 28: 556-561 https://doi.org/10.1252/jcej.28.556
  13. Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolated of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046
  14. KFDA. Korea Food and Drug Administration. Available from: http://www.kfda.go.kr. Accessed Aug. 1, 2005
  15. KFDA. Korea Food and Drug Administration. Available from: http://www.kfda.go.kr. Accessed Oct. 25, 2004
  16. Khadre, M. A. and A. E. Yousef. 2001. Sporicidal action of ozone and hydrogen peroxide: A comparative study. Int. J. Food Microbiol. 71: 131-138 https://doi.org/10.1016/S0168-1605(01)00561-X
  17. Kim, D. W., H. O. Jung, and C. O. Rhee. 1998. Effect of washing on the texture of cooked rice and the loss of soluble solids. Food Eng. Prog. 2: 75-78
  18. Kim, S. K., S. K. Lee, and M. S. Shin. 1997. Effect of surfactants on the characteristics of cooked rice during storage. Kor. J. Soc. Food Sci. 13: 278-285
  19. Lee, M. S. and D. S. Chang. 1980. Distribution and physiological characteristics of Bacillus cereus in rice and rice products. Bull. Kor. Fish. Soc. 13: 163-171
  20. Leguerinel, I. and P. Mafart. 2001. Modelling the influence of pH and organic acid types on thermal inactivation of Bacillus cereus spores. Int. J. Food Microbiol. 63: 29-34 https://doi.org/10.1016/S0168-1605(00)00394-9
  21. Melly, E., A. E. Cowan, and P. Setlow. 2002. Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J. Appl. Microbiol. 93: 316-325 https://doi.org/10.1046/j.1365-2672.2002.01687.x
  22. Moon, G. S., W. J. Kim, and M. Kim. 2002. Synergistic effects of bacteriocin-producing Pediococcus acidilactici K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 12: 936-942
  23. Olmez, H. K. and N. Aran. 2005. Modelling the growth kinetics of Bacillus cereus as a fuction of temperature, pH, sodium lactate and sodium chloride concentrations. Int. J. Food Microbiol. 98: 135-143 https://doi.org/10.1016/j.ijfoodmicro.2004.05.018
  24. Park, J. C., B. J. Park, D. W. Han, D. H. Lee, I. S. Lee, S. O. Hyun, M. S. Chun, K. H. Chung, M. Aihara, and K. Takatori. 2004. Fungal sterilization using microwave-induced argon plasma at atmospheric pressure. J. Microbiol. Biotechnol. 14: 188-192
  25. Park, K. J. and H. H. Lee. 2005. In vitro antiviral activity of aqueous extracts from Korean medicinal plants against influenza virus type A. J. Microbiol. Biotechnol. 15: 924- 929
  26. Penna, T. C. V. and D. A. Moraes. 2002. The influence of nisin on the thermal resistance of Bacillus cereus. J. Food Prot. 65: 412-418
  27. Peng, J. S., W. C. Tsai, and C. C. Chou. 2002. Inactivation and removal of Bacillus cereus by sanitizer and disinfectant. Int. J. Food Microbiol. 77: 11-18 https://doi.org/10.1016/S0168-1605(02)00060-0
  28. Pirhonen, T. I., M. A. Andersson, E. L. Jääskeläinen, M. S. Salkinoja-Salonen, T. I. Honkanen-Buzalski, and T. M. L. Johansson. 2005. Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a foodpoisoning case. Food Microbiol. 22: 87-91 https://doi.org/10.1016/j.fm.2004.04.002
  29. Sagripanti, J. L., C. A. Eklund, P. A. Trost, K. C. Jinneman, C. Abeyta, C. A. Kaysner, and W. E. Hill. 1997. Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am. J. Infect. Control 25: 335-339 https://doi.org/10.1016/S0196-6553(97)90026-2
  30. Sarrías, J. A., M. Valero, and M. C. Salmerón. 2002. Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 19: 589-595 https://doi.org/10.1006/fmic.2002.0514
  31. Sarrías, J. A., M. Valero, and M. C. Salmeron. 2003. Elimination of Bacillus cereus contamination in raw rice by electron beam irradiation. Food Microbiol. 20: 327-332 https://doi.org/10.1016/S0740-0020(02)00124-7
  32. Yoo, J. Y., D. J. Kwon, J. P. Park, and Y. J. Koo. 1994. Use of nisin as an aid in reduction of thermal process of bottled Sikhea (rice beverage). J. Microbiol. Biotechnol. 4: 141- 145
  33. Yun, S. H., S. B. In, and D. H. Park. 2005. Influence of NaCl on the growth and metabolism of Halomonas salina. J. Microbiol. Biotechnol. 15: 118-124