Genetic Analysis of a Structural Motif Within the Conserved 530 Stem-Loop of Escherichia coli 16S rRNA

  • Szatkiewicz Jin P. (Department of Biological Sciences, Wayne State University) ;
  • Cho Hyun-Dae (Department of Biological Sciences, Wayne State University) ;
  • Ryou Sang-Mi (Department of Life Science, Chung-Ang University) ;
  • Kim Jong-Myung (Department of Life Science, Chung-Ang University) ;
  • Cunningham Philip R. (Department of Biological Sciences, Wayne State University) ;
  • Lee Kang-Seok (Department of Life Science, Chung-Ang University)
  • Published : 2006.04.01

Abstract

The 530 stem-loop is a 46 nucleotide stem-loop structure found in all small-subunit ribosomal RNAs. Phylogenetic and mutational studies by others suggest the requirement for Watson-Crick interactions between the nucleotides 505-507 and 524-526 (530 pseudoknot), which are highly conserved. To examine the nature and functional significance of these interactions, a random mutagenesis experiment was conducted in which the nucleotides in the proposed pseudoknot were simultaneously mutated and functional mutants were selected and analyzed. Genetic analysis revealed that the particular nucleotide present at each position except 524 was not exclusively critical to the selection of functional mutants. It also indicated that basepairing interactions between the positions 505-507 and 524-526 were required for ribosomal function, and much weaker base-pairing interactions than those of the wild-type also allowed high ribosomal function. Our results support the hypothesis that the 530 pseudoknot structure may undergo a 'conformational switch' between folded and unfolded states during certain stages of the protein synthesis process by interacting with other ligands present in its environment.

Keywords

References

  1. Allen, P. N. and H. F. Noller. 1989. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA. J. Mol. Biol. 208: 457-468 https://doi.org/10.1016/0022-2836(89)90509-3
  2. Bakin, A., J. A. Kowalak, J. A. McCloskey, and J. Ofengand. 1994. The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 22: 3681-3684 https://doi.org/10.1093/nar/22.18.3681
  3. Bock, A., A. Petzet, and W. Piepersberg. 1979. Ribosomal ambiguity (ram) mutations facilitate diyhydrostreptomycin binding to ribosomes. FEBS Lett. 104: 317-321 https://doi.org/10.1016/0014-5793(79)80842-X
  4. Cannone, J. J., S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D'Souza, Y. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Müller, N. Pande, Z. Shang, N. Yu, and R. R. Gutell. 2002. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: 2 https://doi.org/10.1186/1471-2105-3-2
  5. Capel, M. S., D. M. Engelman, B. R. Freeborn, M. Kjeldgaard, J. A. Langer, V. Ramakrishnan, D. G. Schindler, D. K. Schneider, B. P. Schoenborn, I. Y. Sillers, S. Yabuki, and P. B. Moore. 1987. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238: 1403-1406 https://doi.org/10.1126/science.3317832
  6. Carter, A. P., W. M. Clemons, D. E. Brodersen, R. J. Morgan- Warren, B. T. Wimberly, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340-348 https://doi.org/10.1038/35030019
  7. Clarke, L. and J. Carbon. 1976. A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9: 91-99 https://doi.org/10.1016/0092-8674(76)90055-6
  8. Garrett, R. A., S. R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, and H. F. Noller (eds.). 2000. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. ASM Press, Washington DC, U.S.A
  9. Gauthier, A., M. Turmel, and C. Lemieux. 1988. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: Evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol. Gen. Genet. 214: 192-197 https://doi.org/10.1007/BF00337710
  10. Gutell, R. R. 1993. The simplicity behind the evolution of complex structure in ribosomal RNA, pp. 477-488. In Nierhaus, K. H., F. Franceschi and A. R. Subramanian (eds.), The Translational Apparatus: Structure, Function, Regulation, Evolution. Plenum Press, New York, NY. U.S.A
  11. Gutell, R. R., N. Larsen, and C. R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58: 10-26
  12. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  13. Higuchi, R. 1989. Using PCR to engineer DNA, pp. 61-70. In H. A. Erlich (ed.), PCR Technology. Stockton Press, New York, NY, U.S.A
  14. Jacobson, A. B. and M. Zuker. 1993. Structure analysis by energy dot plot of a large mRNA. J. Mol. Biol. 233: 261- 269 https://doi.org/10.1006/jmbi.1993.1504
  15. Kang, T. J., H. K. Song, J. H. Ahn, C. Y. Choi, and H. Joo. 2003. Optimization of programmed suppression in a cellfree protein synthesis system with unnatural amino acid S- (2-nitrobenzyl)cysteine. J. Microbiol. Biotechnol. 13: 344- 347
  16. Kim, S. H., K. Y. Kim, C. H. Kim, W. S. Lee, M. Chang, and J. H. Lee. 2004. Phylogenetic analysis of Harmful Algal Bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14: 959-966
  17. Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 1996. Genetic analysis of the Shine-Dalgarno interaction: Selection of alternative functional mRNA-rRNA combinations. RNA 2: 1270-1285
  18. Lee, K., S. Varma, J. SantaLucia, Jr, and P. R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: Analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269: 732-743 https://doi.org/10.1006/jmbi.1997.1092
  19. Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 2001. Genetic approaches to studying protein synthesis: Effects of mutations at ${\psi}516$ and A535 in Escherichia coli 16S rRNA. J. Nutr. 131: 2994S-3004S
  20. Melançon, P., C. Lemieux, and L. Brakier-Gingras. 1988. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res. 16: 9631-9639 https://doi.org/10.1093/nar/16.20.9631
  21. Moazed, D. and H. F. Noller. 1990. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211: 135-145 https://doi.org/10.1016/0022-2836(90)90016-F
  22. O'Connor, M., H. U. Goringer, and A. E. Dahlberg. 1992. A ribosomal ambiguity mutation in the 530 loop of E coli 16S rRNA. Nucleic Acids Res. 20: 4221-4227 https://doi.org/10.1093/nar/20.16.4221
  23. Ogle, J. M., D. E. Brodersen, W. M. Clemons, Jr, M. J. Tarry, A. P. Carter, and V. Ramakrishnan. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897-902 https://doi.org/10.1126/science.1060612
  24. Ogle, J. M., V. M. Frank, M. J. Tarry, and V. Ramakrishnan. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721-732 https://doi.org/10.1016/S0092-8674(02)01086-3
  25. Ozaki, M., S. Mizushima, and M. Nomura. 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333- 339 https://doi.org/10.1038/222333a0
  26. Park, H. G., H. G. Ko, S. H. Kim, and W. M. Park. 2004. Molecular identification of Asian isolates of medicinal mushroom Hericium erinaceum by phylogenetic analysis of nuclear ITS rDNA. J. Microbiol. Biotechnol. 14: 816- 821
  27. Powers, T. and H. F. Noller. 1994. Selective perturbation of G530 of 16S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J. Mol. Biol. 235: 156-172 https://doi.org/10.1016/S0022-2836(05)80023-3
  28. Powers, T. and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203-2214
  29. Santer, M., U. Santer, K. Nurse, A. Bakin, P. R. Cunningham, M. Zain, D. O'Connell, and J. Ofengand. 1993. Functional effects of a G to U base change at position 530 in a highly conserved loop of Escherichia coli 16S RNA. Biochemistry 32: 5539-5547 https://doi.org/10.1021/bi00072a007
  30. Santer, U. V., J. Cekleniak, S. Kansil, M. Santer, M. O'Connor, and A. E. Dahlberg. 1995. A mutation at the universally conserved position 529 in Escherichia coli 16S rRNA creates a functional but highly error prone ribosome. RNA 1: 89-94
  31. Stern, S., R. C. Wilson, and H. F. Noller. 1986. Localization of the binding site for protein S4 on 16 S ribosomal RNA by chemical and enzymatic probing and primer extension. J. Mol. Biol. 192: 101-110 https://doi.org/10.1016/0022-2836(86)90467-5
  32. Stern, S., T. Powers, L. M. Changchien, and H. F. Noller. 1988. Interaction of ribosomal proteins S5 1988: S6 S11 S12, S18 and S21 with 16 S rRNA. J. Mol. Biol. 201: 683- 695 https://doi.org/10.1016/0022-2836(88)90467-6
  33. Stern, S., T. Powers, L. M. Changchien, and H. F. Noller. 1989. RNA-protein interactions in 30S ribosomal subunits: Folding and function of 16S rRNA. Science 244: 783-790 https://doi.org/10.1126/science.2658053
  34. Thompson, R. C. 1988. EF-Tu provides an internal kinetic standard for translational accuracy. Trends Biochem. Sci. 13: 91-93 https://doi.org/10.1016/0968-0004(88)90047-3
  35. Woese, C. R. and R. R. Gutell. 1989. Evidence for several higher order structural elements in ribosomal RNA. Proc. Natl. Acad. Sci. USA 86: 3119-3122
  36. Yoon, S. I., S. Y. Kim, Y. W. Lim, and H. S. Jung. 2003. Phylogenetic evaluation of stereoid fungi. J. Microbiol. Biotechnol. 13: 406-414
  37. Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. Cate, and H. F. Noller. 2001. Crystal structure of the ribosome at $5.5\;{\AA}$ resolution. Science 292: 883-896 https://doi.org/10.1126/science.1060089
  38. Zueva, V. S., A. S. Mankin, A. A. Bogdanov, and L. A. Baratova. 1985. Specific fragmentation of tRNA and rRNA at a 7-methylguanine residue in the presence of methylated carrier RNA. Eur. J. Biochem. 146: 679-687 https://doi.org/10.1111/j.1432-1033.1985.tb08704.x