Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building

철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소

  • Published : 2006.03.01

Abstract

It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

격납건물은 원자로 사고발생시 방사능물질의 외부 유출을 막는 최후의 방벽이므로 가동 중 원전의 격납건물에 대한 안전성평가는 반드시 수행되어야 된다. 이러한 맥락에서 이 논문은 원전 격납건물의 비선형해석을 위해 탄소성 모델을 바탕으로 개발된 8절점 가변형도 쉘 요소와 이를 이용한 구조물의 비선형해석에 대하여 기술하였다. 비선형해석을 위해 콘크리트의 압축거동에 Drucker-Prager 파괴기준을 적용하였고 파괴포락선의 형상을 결정짓는 재료매개변수는 이축응력 실험으로부터 도출하였다. 개발된 쉘 유한요소는 퇴화 고체기법과 횡 전단변형도를 고려하기 위하여 Reissner-Mindlin(RM)가정을 도입하였고 쉘의 두께가 얇거나, 즉 종횡비가 작거나, 균일하지 않은 유한요소망을 사용할 경우 구조물의 강성이 과대하게 평가되는 묶임현상(locking phenomenon)을 제거하기 위해 본 논문에서는 가변형도법을 도입하였다. 개발된 철근콘크리트 쉘 요소의 성능검증을 위해서 벤치마크 테스트를 수행하였고 그 결과 이 논문에서 도출한 유한요소해석 결과는 실험결과와 잘 일치 하였다

Keywords

References

  1. 이상근, 송영철, 한상훈(2001) 이축 응력하의 콘크리트 파괴거동, 대한토목학회논문집, 22(2-a), pp.285-293
  2. 이상진, 서정문 (2001) 철근콘크리트 구조물의 비탄성 해석을 위한 9절점 퇴화 쉘 요소, 한국전산구조공학회논문집, 14(4), pp.481-494
  3. 이상진, 이홍표, 서정문 (2002) 철근콘크리트 격납건물의 비선형해석을 위한 유한요소해석프로그램 NUCAS, 한국원자력연구소, KAERI/TR-2076/2002, p.122
  4. 이홍표, 전영선, 서정문, 신재철 (2004) 원전 격납건물 비선형 해석을 위한 콘크리트 재료모델 개발, 한국전산구조공학회 가을학술발표회 논문집, 17(2), pp.312-319
  5. 한국전산구조공학회 (2003) 특별분과-전산역학연구회, 한국전산구조공학회 가을학술발표회 논문집, 16(2), pp.569-606
  6. 현대건설기술연구소 (2001) 프리스트레스 콘크리트 격납건물 부재실험, 한국원자력연구소 위탁연구보고서, KAERI/CM-493, p.177
  7. Ahmad, S., Irons, B.M., Zienkiewicz, O.C.(1970) Analysis of Thick and Thin Shell Structures by Curved Finite Elements. International Journal for Numerical Methods in Engineering, 2, pp.419-451 https://doi.org/10.1002/nme.1620020310
  8. Chen, W.F. (1982) Plasticity in Reinforced Concrete. McGraw-Hill Book Company, p.474
  9. Clauss, D.B. (1987) Round Robin Pretest Analysis of a 1:6 Scale Reinforced Concrete Containment Model subject to Static Internal Pressurization. Sandia National Laboratories. SAND87-0891, NUREG/CR-4913
  10. Clauss, D.B. (1989) Round-Robin Analysis of the Behavior of a 1: 6 Scale Reinforced Concrete Containment Model Pressurized to Failure: Posttest Evaluations. Sandia National Laboratories. NUREG/CR-5341
  11. Criesfield, M.A. (1981) A Fast Incremental/Iterative Solution Procedure that Handles Snap through. Computers and Structures, 13, pp.55-62 https://doi.org/10.1016/0045-7949(81)90108-5
  12. Drucker, D.C., Prager, W. (1951) Soil Mechanics and Plastic Analysis or Limit Design, Quarterly of Applied Mathematics, 10, pp.157-165
  13. Hessheimer, M.F., Klamerus, E.W., Lambert, L.D., Right.ley, G.S.(2003) Overpressurization Test of a 1:4-Scale Prestressed Concrete Containment Vessel Model, Sandia National Laboratories, NUREG/CR-6810
  14. Hedgren, A.W., Billington, D.P. (1967) Mortar Model Test on a Cylindrical Shell of Varying Curvature and Thickness. Journal of the American Concrete Institute. 64(2). pp.73-83
  15. Hibbit H.D. et al.(1984) ABAQUS User's Manuals. Version 4.5
  16. Kupfer, H., Hilsdorf, H.K. (1969) Behavior of Concrete under Biaxial Stress, ACI Journal, Proceeding, 66(8), pp.656-666
  17. Hsu, T.T.C., Belarbi, A. (1994) Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete, ACI Structural Journal, 91(4), pp.465-474
  18. Julien, J.T., Schultz, D.M., Weinmann, T.L. (1987) Concrete Containment Structural Element Tests; Volume 2: Half-Thickness Element Tests-Detailed Test Data, Construction Technology Laboratories, p.338
  19. Reissner, E. (1945) The Effect of Transverse Shear Deformation on the Bending of Elastic Plate, ASME, Journal of Applied Mechanics, 12. pp.69-77
  20. Shima, H., Chou, L., okamura, H. (1987) Micro and Macro Models for Bond Behaviour in Reinforced Concrete. Journal of the Faculty of Engineering. University of Tokyo (B), 39(2), pp. 133-194
  21. Vecchio, F., Collins, M.P. (1982) The Response of Reinforced Concrete to In-plane Shear and Normal Stress, University of Toronto, p.332
  22. Zienkiewicz, O.C., Taylor, R.L. (1989) The Finite Element Method, 1.2, Mcilrew-Hill, New York, p.1455