=)

-9¥ taEdolelA e 73 B-Splined} A R]-71% By Y A7

A-913 tyxEdo]dlA 2] F4] B-Spline?]

AR -7 B g D7
(Sketch—based Modification of the Cubic B-Splines for the
Pen-input Displays)

= ¥ +
2o 2wz

(=)
(Dae-Hyun Kim) (Myoung-Jun Kim)

2 % LCD e=dd gEy PC 59 22 #-98 fxZdols= CADAAM, &3], AME ¢zl
AclM f-E3HA AH2 ok B =ZdME, ofd AAEE 22 3k CAD Al&HodA] A
4 & A#AH B-Spline $4 THE ALEct HEE IJAES 7o g e B-Spline 48 W
= g, B =@elA Adg wHe o ZHe HAFAQ mYg AR =H AHExke H@ 4
o] &3ic}, o] Wold PEE EJAEY ZARH(manipulator)E o] &Y Al w3 gete Y2
o] vk d AaFE AIE 248tk old #AL dARlE Fed YoM AFARE AT &
v A" AAA Jrh B =FdA AAE U £ol4de AFE dsld o8 g9 tixlelUEg
I A¥E 3 AAE HAFEL
7=

2t of et
m JH o

i

Abstract Pen-input displays, such as LCD tablets and tablet PCs, are already popular for its
usability in CAD design, in particular, in concept design phase. We propose an intuitive B-Spline
modification scheme that can be used for the CAD systems targeting for such devices. Differently from
the control point based modification schemes for the B-splines, our scheme relates user pen marking
to determining the final shape of the target curve and surface. This, eventually, reduces time for
interacting with the shape parameters (i.e., by control points or direct manipulators), which has been
regarded as an unavoidable routine tasks for design. To prove its usability, we made an experiments

205

with selected subjects who have been working for industrial design.

Key words :

1. Introduction

A significant achievement for one-handed free-
was made by Baudel [1]. He
proposed a brand new method by which users can

form drawings

freely modify their drawings with successive pen

markings; for example, the user gives a pen
marking over an existing curve C(u), and the
system sculpts the curve considering the shape of

the pen marking—for a perceptive overview, see

t 3348 (MMaBY2dFE Tiled Display Team 79
daek@acm.org
oA g A ol n dA”E| ol g g
mjkim@ewha.ac.kr
(Corresponding author®)
=84 0 20058 59 249
A bgkE 0 20059 119 299

Pen-input displays, B-Splines, Concept Design, CAD

Fig. 1. One restriction of this approach is that it
uses off-line spline curves, which means that the
edited curves are represented by piecewise linear
curves; the program generates G" continuous
Bezier curves only after an explicit user request
(e.g. by pushing a button). Adobe Ilustrator uses
this scheme but is limited to Bezier curves [2).
There exist different curve drawing methods by
which the user can use both hands in drawing.
Singh proposed an interactive method to convert a
B-Spline curve into stylish French curve segments
by iteratively breaking the curve, fitting them with
elliptic curves, and merging them together [3].
Balakrishnan et al.

method which has been used to draw smooth

implemented tape drawing

curves in car design [4].

206 AEAEGY =R A2E D ol2 A 3B A A 4 30064

Sachs et al

environment, 3-Draw, for a virtual environment [5].

proposed 3D curve sketching
In 3-Draw, the user holds a stylus in one hand
and a tablet in the other. These tools serve to
draw 3D curves but they were not concerned about
the representation of the drawn curve and intuitive
modification of the drawn curve. Krueger suggested
similar environment using computer vision
techniques to manipulate four control points along a
spline curve [6]. Poston et al. and Cutler et al. also
suggested two handed input for virtual environ-
ment, however, they are more concerned about
fluent user interactions rather than inventing a
curve drawing method (7.8].

We now focus on the B-spline curve editing.
Fowler et al. [9] found a new way to directly
B-Spline
minimization techniques. This method is inherently

manipulate curves, using constrained
dependent on the structure of the knot vector. For
example, when the knot vector is dense, the locality
of the modification becomes small, leaving the
burden to have a good knowledge over the knot
structures.

Banks et al. [10] proposed a new method to edit
B-Spline curves by cutting and sketching control
polygons. It imposes an additional burden on the
user to understand what control points are, rather
than curve shapes. However, their examples
revealed that editing the control polygon by a pen
marking is quite intuitive, although it is not as
intuitive as a direct curve manipulation. At the end
of Section 2, we show that the our algorithm
generates control polygon of the curves in a similar
way as the user sketched a control polygon in [10].

Zheng et al. proposed a new method to deform a
curve by matching it with another input curve [11].
The authors used knot removal techniques [12]
time and sacrifice

which increase computation

smooth shape changes in the portion of the
transition between the original curve and the input
curve.

Recently, Grossman et al. proposed a method to
draw nice curves using traditional tape drawing;
their achievement is about allowing the user to
draw aesthetic curves such as car body line. For

this, large display wall is needed and special

interaction devices have been invented too [13].
Compared to this approach, ours are more general
and targeted for small-scale applications such as
Adobe Illustrators and plug-ins for existing 3D
modeling systems.

Applying the Baudel’s approach, which seems to
us most fit for pen-input display, to the B-Spline
curves brings about two problems. First, each pen
input needs more knots to be inserted into the
existing knot vector, in particular, around the
transition part between the original curve and the
sketched curve. Therefore, iterative sketches on the
existing curve will end up with unnecessarily many
knots; considering that multiple knots can reduce
the continuity of the final curve, it is desirable to
have only necessary knots to keep the desired
shape. Second, similar to the first problem, often
user may want to simplify the existing curve by
giving a new pen marking, as shown in Fig. 9. In
this case, the wuser should know about knot
structure.

Michaelik et al. [14]
sketch B-Spline curves but did not detailed how to
address the aforementioned problems. Qur approach

suggested a method to

here combines two methods from Fowler et al. [9]
and Baudel [1); by which it resolves the locality
constraints inherent from B-Spline knot structure in
the pen-input sketching environment. The former
modifies B-Spline curve based on the underlying
knot structure of the curve and is very restricted
in determining the locality of modification; for
example, if there are dense knots for the B-Spline

curve, moving a curve point will change only very

small region of the curve regardless user’s
intention. Meanwhile, the latter works only on
Bezier curves. Qur approach takes the two

approaches such that the smooth B"Spline curves
can be sketched through pen-input; given a pen
marking drawn over a B-Spline curve, as shown in
Fig. 1, the algorithm defines how to modify the
curve considering both the pen marking and the
existing curve, resulting in an implicitty defined
shape change. The main contributions of our work
can be summarized as follows:

* Direct control with implicitly defined locality
this method,

constraints In the wuser’s pen

Y

=

markings are directly applied to a cubic B-Spline
curve. Locality means that part of the curve for
sculpting is implied by the shape of the input pen
marking.

«On-the—fly C? curve The cubic B-Spline curve
provides C ? continuity all over the curve unless
it has redundant knots inside. Therefore, the pen
marking, which locally and directly operates on
the curve, will produce another C* continuous B-
Spline curve.

* Fewer knots The algorithm incrementally adds

Thus

introduced in the transition area between the

new knots. only necessary knots are
original curve and the pen marking. For example,
when the original curve has a complicated shape

(and thus many control points) a simplifying

stroke may modify the curve to contain fewer

control points.

This paper also demonstrates how this approach
can be used in deforming surfaces intuitively as
well. First, we show how to re-sketch a parameter
line of a B-Spline surface, resulting in a surface
deformation. Second, we re-sketch a wire (B-Spline
curve) that is bound to a surface, resulting in an

implicit surface deformation described in [15].

2. Overview

Let us first assume that we have the following

cubic B-Spline curve:
cw= 5P
=

where P, is a control point and B; is a B-Spline

basis function over a knot vector 7%
= {tO’tl’t27t3""’tn+17tn+27tn+3’tn+4}

Fig. 1 shows the overall procedure to be taken to
modify the given B-Spline curve C(u):
+« STEP1: The wuser

h={hli=0,---,m}.
*«STEP2: The

change in a digitized point sequence that consists

gives a pen marking,

algorithm computes the shape

of the following (See also Fig. 1):

- h: The input pen marking.

- BLB" from h to the
existing curve {(dotted curve in the middle of
Fig. 1).

Smooth transitions

-8 t2Fgole) 9] 74 B-Splined] 2 2-7]% A

o

W AT 207

pen marking #

Elay Bl h

2. local modification

Figure 1 Top: The target B-Spline curve (u), and
the user-drawn modification pen marking
h. Middle: Computing the shape change
considering both the knot vector of the
existing curve and the given pen marking.
Bottom: Local modification to the existing

curve

- ELE"™ The remaining curve portions within
the knot interval which contains each end of
the transitions.

« STEP3: The algorithm locally modifies the Clu)
according to the digitized shape change.

Here, we assume that the user is iteratively
modifying the existing curve but not drawing a
new curve, as shown in Fig. 10; when the user
wants to draw a new curve, the user has to
explicitly change the mode, for example, by
pushing a button. Also, since c® continuity can be
achieved by simply connecting two C % curves and
simply adding another user interface, this paper
focusses only on C? continuous sculpting; any
user pen marking placed near an existing curve
results in a C? continuous local modification to
the curve.

208 BEAGFH=EA A 2H] B o2 A 33 d Al 4 5(20064)

The remainder of this paper is organized as
follows. Section 3 explains how to compute the
shape change intended by the user pen marking.

Section 4 explains constrained curve modification to -

the cubic B-Spline curve. Section 5 demonstrates
how to wuse this B-Spline curve modification

scheme to the B-Spline surfaces.

3. Computing the Shape Change

This section details STEP 2 in Section 2. To
properly extract the curve portions that we will
piece together with the input pen marking A to
form the shape change, we need to locate several
break points that divide the existing curve. In the
following, we detect the breaking points in the

parameter domain of C(u), {tou,,u,u,u,. b}, as

p
shown on the top of Fig. 1.

We first establish approximate correspondence
between C(u) and h; from the parameter domain of
C{u), locate an interval [u,u,], which approximately
corresponds to the pen marking by simply
searching for the closest points in C(u) from two
endpoints of the pen marking. As a result, as
shown in Fig. 1, C(u) of u€lu,u,] constitutes the
approximate correspondence.

To determine where B'(t)(B") starts or ends in
the parameter domain of C(u), we define two

. Upe = Uy Ty
dy =3,)—hl and d,=3ICAu)=h,| For a

broader blending area, we could choose a value

terms, u,, =u,—d;, and where

larger than three.

The two curve portions corresponding to the two
intervals, [ups,us] and [ue,upe], will be used to make
a continuous geometric transition from C(u) to the
pen marking h. Now from the knot vector 7, look
for the t, and ¢ t,=max{t, <u, 5, €T} and
ty=min{t; 2w, [t, ET}. We now have all the
breaking points we need to decompose the curve
C(u). Subsequently, only the left part of the curve
will be explained, since the right part functions
analogously.
+Call the curve portion C(u) of ue[tk,ups], Eu),
+Convert Cf{u) of ue[u,w,us] into a piecewise

linear curve, B (t), which has chord-length

parametrization, t< [ups YU]

*Blend BYt) with a line segment Z which is
tangent at h; and has length d;, and keep it into

BY(t) itself [1].

We now know how the original curve should be
changed by the shape change embodied by several
curve portions, Eu), Buw), h, B'(u), and E"(u)
(See also Fig. 1). Piece them together into one
piecewise linear curve h with the parameter domain
[t,ot)]. In the next section, h will be approximated
with G, (u), which will replace part of Cf(u),

u€[t,t), resulting in the local modification. At a

first glance, EYu) seems unnecessary. To modify

C(u) only within the domain [u,,u,], inserting

ps?

multiple knots at u is required. This will

ps
introduce unnecessarily many knots; several times
Clu) will

uncontrollably many knots, which at some point

of sketching over the introduce

will need running knot removal algorithm.

Therefore, we let the B-Spline curve G, (u)
approximate the piecewise linear curve over knot
[tet)],

errors and adding necessary knots.

interval iteratively minimizing pointwise

Pen marking
C(u)

Figure 2 An example shows the shape change exceeds
the boundary of the existing curve ((u)

Also the case in which u;,—d; exceeds the

parameter boundary of C(u) should be considered,
as shown in Fig. 2. There are two possibilities:
The first one is to let B(t) (or h) replace the left
part of C(u). The second one lets the final curve
interpolate the end point of C(u). Here we choose
the second approach since it lets users easily

extend the curve at the end points.

&

4. Local Modification of the B-Spline Curve ()

This section explains how to iteratively approxi-
mate the shape change, ﬁ, with a cubic B-Spline
curve G, (u) and replace part of C(u) with that;
conceptual overview is shown in Fig. 3. Therefore,
the final curve is obtained by locally modifying
(u) through a user pen marking. The new curve
G,.(u) is constrained to follow the target curve
Cu) by sharing the control points (which are
called constrained control points) near the transition
part with those of C(u); for example, two control
polygons coincide in part as notified in Fig. 3. The
iterative approximation process for G, (u) starts
with a new knot vector with the knot interval
[tk,tl] empty; the algorithm iteratively adds new
knots in [t,,t,] and computes the unknown control
points using constrained least squares. Changing
the knot vector 7 into 7,,, and later adding a new
knot into 7;,. causes changes in the constrained
control points as well; the algorithm checks
whether the constrained control points from Clu)
are influenced (i.e., refined) by the knot insertion
algorithm [16].

around t,,, would refine the control polygon and

P,_,P,_,. This

Usually, inserting a new knot

shorten (or extend) the edge

influence can be checked by looking at knot span
[tistira]l (and [4_ot]) of 7, to simplify the
description of the algorithm, in the following, we
define mark.

New Control Polygon

Constrained
control points...,

Control Polygon

Initial setup for Tioc

Lestieolier B bty laolng
Figure 3 A new knot configuration for the local
curve G, (u)and the constraints imposed

on both curves

-RE taFe ool el 7Y B-Splines] 2AA-7vk A Y d7 209

First, we need to initialize a new knot vector 7,,,
for G, (u).

« Collect knots from the knbt vector, 7, of Olu)

and make a new knot vector for G, (u),

Too = {tio syt prtevtptptis vt ptieg)

If there are more than one knot in (t,.t,) of 7,
create two marks to watch any change to the
constrained control points:

2 =ty =tho

Let us note that, constructing the knot vector 7,
from 7, all the knots in (t,%,) have been ignored
since they do not reflect the parametrization of h
any longer. Instead, new knots will be inserted
while approximating h with G,.(w).

The marks simplifies the algorithm to keep track
of the knots, at the

[ttiss] (and [t_gtl), so that we could notice

newly inserted, intervals

when and how the constrained control points from
C(u) are affected.
Overall algorithm can be summarized as the

following procedure:

Algorithm 1-1: LocalCurveApproximation
INPUT: C(u), Tioe. tolerance €, and h
CHANGE: Cioe(x) with 7., updated
(1) Set. up the constraints = the constrained control points (Py_3. Pe_p) and
(P2, Pra)
loop
(2) Cr{u) = ConstrainedLeastSqnares (constraints, Tje., h);
(3) Error = FindMaxError (Cie(u). h):
(4) if Error < ¢, return CONVERGENCE
(5) i = TraceMostDeviatedKnothnterval(Chya{u). h. Troe):

(6) SubdivideKnotVector (constraints, 2235 T, Choo(u)):

In step (1), the constraints for the new curve
G,.(u) are set. The control points of Clu) that

influence the curve segment within [t,.¢,,,] and
[t,_t) are (B g P 0P BN\ on the left side
and (P_;,B_3P_pP_,) on the right side (See
also Fig. 3).
(Py_3p,_y) and (P_,,F_,) are used as constraints

For the first iteration, therefore,
for the ConstrainedLeastSquares in step (2) (for
more details on the constrained optimization, we
refer the readers to [17]). However, in a certain

210 FRAT =4 Al2E D ol A 3B F A 4 TQ064)

condition, which may occur from the next iterations
inserting a new knot, F,_, and F_, are to be
modified in step (6); we discuss how to set up the
constraints later.

In step (3), FindMaxError measures the maxi-
mum error: suppose the piecewise linear curve h
has the following chord-length parameterization:

{uO,-",um}, uy =t,u, =1,
Then the maximum error M is defined as follows:
M:max;n=0‘qoc(ui)_hi|

If the maximum error is less than the input
tolerance ¢ the output curve G, .(u) is considered
TraceMost-
DeviatedKnotInterval of the step (5) searches for

converged and the algorithm stops.

the i-th knot span of 7, which has the most
deviated error, and determines a new knot:
t* =0+t .,)/2
In step (6), SubdivideKnotVector inserts the new
knot t*

(P._3py-,) for the constraints, which come from

into 7. The above algorithm takes

C(u). When the new knot is inserted near a mark,
(P_ppi_y) of Clu) are also influenced by a
B-Spline knot insertion algorithm [16]; thus G, (u)
takes the constrained control points accordingly
modified by the knot

marks are used to see when these constrained

insertion algorithm. The

control points are affected by the knot insertion.

To explain the influence we need some new
definitions. Suppose two marks, z; and 2, are inside
the T,

Definition 1 (Muitiplicity of a mark z p(z))

The number of the knots of the 7, that are
located in (z—¢,2+¢), counting in the mark z itself,
is called the multiplicity of the mark; denote it by
u(z).

Definition 2 (Neighborhood of a mark 2 MN(z))

The neighborhood of the mark

interval (t,,0ptnz¢), Where t,., (t.,) is the

is an open

closest knot to 2, approaching from the left (right)
side of 2. Denote the neighborhood of z by Mz).
Whenever a new knot inserted into the neighbor-
hood of a mark, the constraints, (Pk_;;:pk_z) and
(P_,P_,), should be modified, according to the

The control point computed
by inserting #*

Knot vector | f } ‘ f ; {

1
tri tri tr o trel tri2 tre3

i ! i
a b

Figure 4 Knot insertion and its effect on the first

edge. The control points that affect curve

points in the knot span [¢,,¢,,,] are shown.
Other control points newly generated by

inserting t* are omitted

C)

Modified C(u)

Pen marking

(a) (b)

Control Palygon of the

modified C(u)

Control Polygon
of C(u)

(c)
Figure 5 Re-sketch of a B-Spline curve. (a) Shows

user’'s hand giving a pen marking (gray
color). (b) Shows the resulting curve locally
deformed from the original curve. (¢) Shows
the control polygons of the previous curve
(grey) and the resulting curve (black). In
this example, the new curve is more

complex than the old one

B-Spline knot Fig. 4
illustrates the knot insertion principle. From this

insertion algorithm [16];

principle, for example, when a new Kknot t* s
inserted into the neighborhood of a mark, z,, the

control point £, _, is modified as follows:

)

t* —t, t* —t,
k2)Pk_3+(k—2

P, =(1—
k-2 = Z "ty

)P, (D

kT P

Let us note that when t* goes beyond the z; to
the right the resulting F,_, is an extrapolation
point of the line segment m; otherwise, it is
an interpolation point. In the same way as the
above equation, when the new knot is inserted into
the neighborhood of 2, the control point F_, is
modified as follows:

X x o
7 —z 1" —z

P_,=(1—)P _y +(), @

a7 b2 %
We now define the step (6), SubdivideKnot-

Vector, using the above definitions:

Algorithm 1-2: SubdivideKnotVector
INPUT: constraints, t*, Ty, and Cj,.(uw)
CHANGE: T}, and the constraints updated
if no marks are defined
insert t* into T,e
==t
Update the constraints according to Eq.1 and Eq.2
else
if p(z) 2 1and t* € N(z)
Update the constraints according to Eq.1
2, = t*, insert t* into T,
if (=) 2 1 and ¢ € N(z)
Update the constraints according to Eq.2

2 = 1%, insert £ into Tiee

This approach using interpolation and extrapolation
of control points in accord with the newly inserted
knots enhances the quality of local modification
because it properly sets up the constraints. There-
fore, it can internally manipulate control polygon
like Banks’ [10] that lets

manually sculpt the control polygon itself; such

software the user
sculpting effect is well shown at the bottom of Fig.
6, 7 and 8 An example of extrapolating control
points can be found in Fig. 8 where the user

intends to simplify the target curve.

-8 daEg oM FY B-Spline] 2A -7 B ¥ dF 211

Modified C(u)

Control Polygon
of Clu)

Control Potygon of the
modified Clu)

(c)

Figure 6. Shows a situation similar to Fig. 5

Pen marking m H

—

Modified C(u)

Cuy

(a) Interpotated Pie2
new Pi-2

(b}

Control Pelygon of the
modified C(u)

Control Polygon
of C(w)

(© g

Figure 7. Shows a radical simplication on the B-Spline
curve from the result of Fig. 6 by a pen
marking. Note that the control polygon of
the resulting curve is, in part, an extension
of an edge of the control polygon of the old
curve (extrapolation) and, in part, the result

of cutting an edge (interpolation)

5. Results and Applications

Now we discuss the implementation issues of our
algorithm and also present more results in 2D
curve sketching as well as 3D curve sketching that
leads to surface sketching. We also made a user

212 ARATIH =LA A" D o] A 33 A A 4 Z(20064)

Figure 8 Left Column: The user successively sketches

the given B-Spline curve, ie., almost
straight line, towards a shape. Right Column:
The algorithm modifies the curve (from
dotted to solid curve) according to the

sketched pen markings

test where the selected users (experienced designers)
draw curves using our curve drawing tool and a
commercial modeling S/W MAYA [18].

5.1 Implementation

We implemented the sketching algorithm des-
cribed using the Microsoft Visual C programming
language and tested on a Fujitsu 1.4 GHz Tablet
PC running under the Windows XP Tablet PC
Edition. We chose OpenGL as a graphics library
and used a public domain library to represent and
manipulate B-Spline curves and Surfaces. The
algorithm runs interactively for 2D curve sketching,
but shows a certain response time to apply this to

3D surface editing; this latency does come from
deforming 3D surface.

Fig. 8 shows that the user successively sketches
the existing curve (left column) and the algorithm
locally modifies the B-spline curve. The remainder
of the figures demonstrates the B-Spline surface
sketching applying the curve sketching metaphor.

5.2 B-Spline Surface Sketching

We now show how to incrementally sketch B-
Spline surfaces using the algorithm developed in
Section 3 and Section 4. In this section two
methods to sketch B-Spline surfaces, applying the
curve sketching method, will be demonstrated:

» Surface sketching by re-sketching a wu-curve (or

a v-curve) of the existing surface.

* Surface sketching by re-sketching an arbitrary

B-Spline curve bound to the existing surface,

which has been proposed in [15].

For the first method, a pern marking is used to
extract a u-curve (or a v-curve) from the target
surface; in the same way as the previous sections,
the user re-sketches the curve, but in 3D, and the
system deforms the surface accordingly.

On a bicubic B-Spline surface, as an initial
interaction the user draws a pen marking, which is
projected onto the wuv parameter domain of the
surface. Least squares fitting is applied to deter-
mine the closest u-curve (or v—-curve, subsequently
v-curve) to the marking (See Fig. 9 top left). A
further user interaction comes to setup an auxiliary
surface; auxiliary surface is, in this case, defined to
be a ruled surface that passes though the u-curve
along a user defined direction. Then the user
re-sketches the u-curve to deform the surface(See
Fig. 9 top right). The re-sketched pen marking will
be projected onto the auxiliary surface; the locally
modified resulting curve is a 3D curve since the
auxiliary surface is not necessarily to be a plane.
To deform the surface as well, we need to solve a
system of linear equations as defined in [9].

The step (5) of Alg.1-1, knot selection, needs a
slight modification to consider the surface knot
added knots for the

re-sketched would increase the number of control

space. Newly u-curve
points of the target surface after each sketch

interaction, and the number of knots will eventually

)

Figure 9 Sketching B-spline surfaces. Top Left: A
default auxiliary surface, which is devel-
opable (red transparent surface), is con-
structed perpendicular to the u-curve (or
the v—curve). Top right: The user draws
a curve onto the auxiliary surface to

Bottom: The

sculpt the actual surface.

resulting surface is shown

:

Figure 10 Sketching a jug model. Left: A default
auxiliary surface on the boundary curve.
Right: the user draws a marking onto
the auxiliary surface to make a mouth
of the jug

explode after several steps of deformation.
Therefore, a knot vector of the surface before the
deformation is reused for the knot selection. Two
knot vectors from the wu-curve and from the
surface must be compatible with each other. As
noted in Section 4, when the pen marking sim-
plifies the parameter line, a knot removal algorithm
[12] can be used to simplify the knot vector of the
target surface as well. Another example of surface
deformation by re-sketching a parameter line of a
B-Spline surface is demonstrated in Fig. 10.

-9 tz=Zd ol A9 74 B-Spline?] Z=AX-7|9 AF Ay A+ 213

Figure 11 A sketching example for more complex
geometry

The second method, re-sketching an arbitrary
curve on a target B-Spline surface and deforming
the surface to exactly follow the surface curve
involves a singular matrix to be solved [14]; more-
over, this singular system is mostly ill-conditioned
and causes unexpected results. Such an exact
method, however, is not necessary for interactive
sketching applications. Therefore, to demonstrate
more complex examples of sketching B-Spline
surfaces, we apply our curve sketching to the
WIRES of [15].
curve bound to the target surface leads to implicitly
In Fig. 11, an

intersection curve between the target surface and

In this method, deforming the

deforming the surface as well

the auxiliary surface (in this case, the auxiliary
surface is an arbitrary surface) is re-sketched and
the target surface is deformed following the
re-sketched B-Spline curve projected onto the
auxiliary surface.

5.8 User Tests

For more quantitative evaluation, we conducted a
user test where we selected ten subjects to draw a
car silhouette using both our system and a
commercial 3D modeling tool MAYA [18]. In this
test, the observer watched each subject drawing
the target curves on a car image embedded into

each system as shown in Fig. 12. We measured

214

Curve drawing

'
2
¢
i
|
i

AR =R A 2xd 2 o2 A 33 A Al 4 3(20064)

BOQ [e o e e e - e iy
With our tool With MAYA
250
- ™ | - i

200 SR SN S S
) _
2 150 — e
@
E

1 2 3 4 5 € 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 13 Test results: left part shows times taken to draw the curves with our tool for each

users

subject.

Right part shows times with the commercial tool

the time for completing the task.

Fig. 13 shows the statistics for the two tools;
our method shows better performance. The main
reason behind this result comes from the fact that
the commercial tool requires modifying control
points whenever the designers have to change the
shape. Moreover, they have to change the knot
vector when the figure requires more curvy shape.
Meanwhile, with our system, they do not need to

care about those shape parameters.

6. Conclusion and Future Work

This paper proposed and implemented the con-
strained cubic B-spline curve modification based on
pen—input, which has been proven to be a useful

tool for sketching smooth curves and surfaces. As
a future work, we suggest to bring this into a
virtual 3D environment where the user can draw
3D curve more freely with 3D pointing devices;
which has been otherwise quite awkward for the
users using pen-—input display (i.e., by projecting 2D
sketching onto an auxiliary surface), as demon-

strated so in Section 5.

References

[1] T. Baudel, A mark-based interaction paradigm for
free-hand drawing. In UIST 94, pages 185-192.
ACM SIGGRAPH, 1994,

[2]1 Adobe. Adobe Tllustrator 10, 2004.

[3] Karan Singh. Interactive curve design using

(4]

[5]

[6]

(7]

(8}

f101

{11}

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[

digital french curves. In Symposium on Interactive
3D Graphics, pages 20-30. ACM, 1999,

Ravin Balakrishnan, George Fitzmaurice, Gordon
Kurtenbach, and Willian Buxton. Digital tape
drawing. In User Interface Software and Tech-
nology, pages 161-169. ACM, 1999.

Sachs E., Roberts A., and Stoops D. 3-draw: A
tool for designing 3d shapes. IEEE Computer
Graphics and Applications, (6):202-211, 1991.

M. Krueger. Artificial Reality II. Addison-Wesley,
1991,

T. Poston and L. Serra. Dexterous virtual work.
Commun. ACM, 39(5):37-45, 1996.

L. Cutler, B. Frohlich, and P. Hanrahan. Two-
handed direct manipulation on the responsive
workbench. In ACM/SIGGRAPH Symposium on
Interactive 3D Graphics, pages 107-114. ACM, 1997.
Barry Fowler and Richard Bartels. Constraint-based
curve manipulation. IEEE Computer Graphics and
Applications, pages 43-49, 1993.

M. J. Banks, E.Cohen, and T. I Mueller. An
envelope approach to a sketching editor for
hierarchical free-form curve design and modifi-
cation. In R. N. Goldman and T. Lyche, editors,
Knot Insertion and Deletion Algorithms. 1993,
SIAM.

JM. Zheng, K.W. Chan, and I Gibson. A new
approach for direct manipulation of free-form
curves. Graphics Forum, 17(3):C327-C334, 1998.
Les Piegl and Wayne Tiller. The nurbs book.
Monographs in Visual Communications, 1995.

T. Grossman, R. Balakrishnan, G. Kurtenbach, G.
Fitzmaurice, A. Khan, and W. Buxton. Creating
principal 3d curves with digital tape drawing. In
Proceedings of the 2002 ACM Conference on
Human Factors in Computing Systems, pages
417-423, 2002.

P. Michalik, D. Kim, and B. Bruederlin. Sketch-
and constraint-based design of b-spline surfaces.
In Seventh ACM Symposium on Solid Modeling
and Applications, pages 297-304. ACM, June 2002.
Karan Singh and Eugene Fiume. Wires: a geo-
metric deformation technique. In ACM SIGGRAPH
98, pages 405-414. ACM, 1998.

J. Hoschek and D. Lasser. Fundamentals of
computer aided geometric design. AK. DPeters,
Ltd., 1989.

G. Golub and C. van Loan. Matrix Computations.
The Johns Hopkins University Press, 1989.
Alias/wavefront. MAYA 6.0, 2005.

948 g2z ol 74l B-Splined] AAX-719F B wy A7 215

A94E

1994 TYPAMSAAHE R A &at
1995 n#dign AFHSIH ofshd
A} 2004 =Y Bremen Wistw I8
b 19919 ~1999'd = RHAE AT
4 47 20048 ~E8A A2y ad
T LA, Bk AFH 1Y

24 e

| 1989 SRErietet Aidsta spAp
19919 @=xAsrled AR Aat
1996 ShxmEtyled AsketE gkl
199613 ~1997d University of Wash-
. u®P | ington A7 19979 ~1998 Al
om0 D oSt Al 19989 ~20001d
S AAFAATYE ALFTH. 20008 ~2001d & A2~
AF4% 20019 ~@A olgldxtistn Cxjeu|t]ojstR
Zug, FaFoks AFE Y, Erk ofune)d,
AY Z=adg9

