Synthesis and Smooth Muscle-Selective Relaxant Activity of a Piperidine Analogue: 1-(4'-Fluorophenacyl)-4-Hydroxy-4-Phenyl-Piperidinium Chloride

  • Published : 2006.01.01

Abstract

The antispasmodic and vasodilator activities of a newly synthesized piperidine derivative (1-(4'fluorophenacyl)-4-hydroxy-4-phenyl-piperidinium chloride) were studied in vitro. The test compound exhibited a dose-dependent relaxant effect on the spontaneous and $K^+$ (75 mM)-induced contractions of isolated rabbit jejunum with respective $EC_{50}$ values of 0.01 mM(0.01-0.02, 95% CI) and 0.30 mM (0.17-0.56). The $Ca^{++}$ channel blocking (CCB) activity was confirmed when the test compound (0.1-0.2 mM) shifted the $Ca^{++}$ dose-response curves to the right, similar to that produced by verapamil ($0.1-1.0{\mu}M$), a standard CCB. In the isolated rabbit aorta, the test compound showed a dose-dependent vasodilator effect on $K^+$ (75 mM)-induced contractions with an $EC_{50}$ value of 0.08 mM (0.02-0.26) while also suppressed the norepinephrine ($1{\mu}M$) control peak responses with $EC_{50}$ value of 0.08 mM (0.05-0.13, n=5). When tested in Langendorff perfused rabbit heart preparation, the test compound exhibited a negligible inhibitory effect on the rate or force of atrial and ventricular contractions when tested up to 5 mM. The results show smooth muscle-selective relaxant effect of the test compound on intestinal and vascular preparations mediated possibly via blockade of voltage and receptor-operated $Ca^{++}$ channels.

Keywords

References

  1. Bolton, T. B., Mechanism of action of transmitters and other substances on smooth muscles. Physiol. Rev., 59, 606-718 (1979) https://doi.org/10.1152/physrev.1979.59.3.606
  2. Clark, R. D., Caroon, J. M., Kluge, A. F., Repke, D. B., Roszkowski, A. P., Strosberg, A. M., Baker, S., Bitter, S. M., and Okada, M. D., Synthesis and antihypertensive activity of 4'-substituted spiro[4H-3,1-benzoxazine-4,4'-piperidin]-2(1H)- ones. J. Med. Chem., 26, 657-661 (1983) https://doi.org/10.1021/jm00359a007
  3. Eisleb, O. and Schaumann, O., Dolantain, a new antispasmodic and analgesic. Deut. Med. Wochschr., 65, 967-968 (1939) https://doi.org/10.1055/s-0028-1120563
  4. Farre, A. J., Colombo, M., Fort, M., and Gutierrez, B., Differential effects of various Ca$^{++}$-antagonists. Gen. Pharmacol., 22, 177-181 (1991) https://doi.org/10.1016/0306-3623(91)90331-Y
  5. Gilani, A. H. and Cobbin L. B., Cardio-selectivity of himbacine: a muscarine receptor antagonist. Naunyn-Schmiedeberg's Arch. Pharmacol., 332, 16-20 (1986) https://doi.org/10.1007/BF00633191
  6. Gilani, A. H., Shah, A. J., Ghayur, M. N., and Majeed, K., Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci., 76, 3089-3105 (2005) https://doi.org/10.1016/j.lfs.2004.12.021
  7. Godfraind, T., Miller, R., and Wibo, M., Calcium antagonism and calcium entry blockade. Pharmacol. Rev., 38, 321-416 (1986)
  8. Godfraind, T., Classification of calcium antagonists. Am. J.Cardiol., 59, 11B-23B (1987) https://doi.org/10.1016/0002-9149(87)90077-4
  9. Karaki, H., Historical techniques: Cytosolic Ca$^{++}$ and contraction in smooth muscle. Trends Pharmacol. Sci., 25, 388-393 (2004) https://doi.org/10.1016/j.tips.2004.05.008
  10. Koike, K., Takayanagi, I., Takiguchi, S., Urita, Y., and Miyake, N., Ca$^{++}$-blocking action of stereoisomers of CI-951, (+)-CI- 951, (NC)-1500 and (-)-CI-951 in the isolated muscle preparations. Gen. Pharmacol., 23, 207-210 (1992) https://doi.org/10.1016/0306-3623(92)90011-8
  11. NRC, National Research Council, Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington D.C, pp. 1-7, (1996)
  12. Pugsley, M. K., The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol. Ther., 93, 51-75 (2002) https://doi.org/10.1016/S0163-7258(02)00165-1
  13. Reynolds, I. J., Gould, R. J., and Synder, S. H., Loperamide: blockade of calcium channels as mechanism for andtidiarrheal effects. J. Exp. Pharmacol. Ther., 231, 628-632 (1984)
  14. Saeed, M., Saify, Z. S., Gilani, A. H., and Iqbal, Z., Studies on the effects of piperidine derivatives on blood pressure and smooth muscles contractions. Arch. Pharm. Res., 21, 370- 373 (1998) https://doi.org/10.1007/BF02974628
  15. Saify, Z. S., Mushtaq, N., Khan, K. M., Perveen, S., Shah, S. T., Abdel-Jalil, R. J., Fecker, M., and Voelter, W., Synthesis and pharmacological activity of 4-(4'-(chlorophenyl)-4-hydroxypiperidine) derivatives. Chem. Pharm. Bull., 53, 64-66 (2005) https://doi.org/10.1248/cpb.53.64
  16. Staff Department of Pharmacology, University of Edinburgh, Pharmacological Experiments on Isolated Preparations. E & S Livingstone, Edinburgh, pp. 116-119, (1970)
  17. Takai, H., Obase, H., Teranishi, M., Karasawa, A., Kubo, K., Shuto, K., Kasuya, Y., Hashikami, M., Karashima, N., and Shigenobu, K., Spiropiperidines. I. Synthesis of 1'-substituted spiro[4H-3,1-benzoxazine-4,4'-piperidin]-2(1H)-one derivatives and evaluation of their antihypertensive activity. Chem. Pharm. Bull., 33, 1129-1139 (1985) https://doi.org/10.1248/cpb.33.1129
  18. Triggle, D. J., Drugs affecting calcium regulation and actions, In Smith, G. M., and Reynard, A. M. (Eds.), Textbook of Pharmacology. W. B. Saunders Co., Philadelphia, pp. 453-479, (1992)
  19. Vanhoutte, P. M., Differential effects of calcium entry blockers on vascular smooth muscle, In Weis, G. B. (Ed.), New Perspectives on Calcium Antagonists. American Physiological Society, Bethesda, pp. 109-121, (1981)