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Abstract

In strictly two-sided, commutative biquantale, we show that Hutton (L, ®)-uniform spaces and (L, ®)-uniform spaces
induce enriched (L, ®)-topological spaces and enriched (L, ®)-interior spaces.
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1. Introduction

Recently, Gutiérrez Garcia et al.[2] introduced L-
valued Hutton unifomity where a quadruple (L, <, ®, *)
is defined by a GL-monoid (L, *) dominated by ®, a cl-
quasi-monoid (L, <,®). Kubiak et al.[12] studied the re-
lationships between the categories of I(L)-uniform spaces
and L-uniform spaces. Kim et al. [9,10], as a somewhat
different aspect in {2], introduced the notion of Hutton
(L, ®)-uniformities as a view point of the approach using
uniform operators defined by Rodabaugh [15] and (L, ®)-
uniformities in a sense Lowen [12] and Hohle [3] based
on powersets of the form LX*X, Futhermore, the cate-
gory HUnif of all Hutton (L, ®)-uniform spaces and H-
uniformly continuous maps and the category HUnif of all
(L, ®)-uniform spaces and uniformly continuous maps are
isomorphic.

In this paper, we introduce the notion of enriched
(L, ®)-topologies and enriched (L, ®)-interior spaces. We
investigate the relations between them. Moreover, we show
that Hutton (L, ®)-uniform spaces and (L, ®)-uniform
spaces induce enriched (L, @) -topologies and enriched
(L, ®)-interior spaces.

2. Preliminaries

Definition 2.1 [4-7, 14] A triple (L,<,®) is called
a strictly two-sided, commutative biquantale (stsc-
biquantale, for short) iff it satisfies the following proper-
ties:

L) L = (L,<,V,A, T,1) is a completely distribu-

H=,Xl: 20064 28 16
2tz X} : 2006 48 10
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tive lattice where T is the universal upper bound and |
denotes the universal lower bound;
(L2) (L, ®) is a commutative semigroup;
L3)a=a®T,foreacha € L;
(L4) @ is distributive over arbitrary joins, i.e.

(\V a)ob=\/(a:0b).

i€l iel

(LS) © is distributive over arbitrary meets, i.e.

(Na)ob= (e 0ob).

i€l el

In this paper, we always assume that (L, <,©,* ) is a
stsc-biquantale with strong negation * where ¢* = a — 0
unless otherwise specified.

All algebraic operations on L can be extended point-
wisely to the set L as follows: forall z € X, f,g € LX
anda € L,

(M) f < giff f(z) < g(z);

@) (f 0 9)(z) = f(z) © 9(2);

B 1x(x)=T, a0lx(z)=aandlp(z)=

@ (& = A)(z) = a — AMz) and (A — a)(z) =
Az) — o

5) (@ N)(z) = a © A(z).

Definition 2.2 [9,10] Let ©(X) be a subset of (LX)(Z™)
such that
(O1) A < ¢(N), foreach A € LX,

(02) $(Ver i) = Vier ¢(Ni), for {As}ier € L*
(03) a ® ¢(A) = ¢p(a ® N), foreach A € LX.



Lemma 2.3 [9,10] For ¢, ¢1, ¢2, 3 € Q(X), we define,
forall A € LXK,

7'\ = Nlpe L¥ | ¢(o7) < A"},
$1 0 ¢2(A) = d1(¢2(N)),
¢1® ¢2(N) = A\{d1(M) @ d2(A2) | A = A1 © Az}

Then the following properties hold:

M) If ¢(1ysy) = pz forall z € X, then ¢p()) =
VzeX A(z) © pz-

Q) If $1(1zy) = ¢2(1(sy) for all z € X, then
1 = Pa.

(3) 971, b1 0 ¢a, 1 ® B2 € QUX).

4) $1 @ 92 < @1 and $1 ® ¢2 < ¢a.

(5) (61 ® $2) ® ¢p3 = ¢1 @ (¢2 ® ¢3),

(6) (1 ® ¢2) 0 (1 ® ¢2) < (h1 0 $1) ® (92 0 Pa).

(7) Define ¢t € Q(X) as (f)‘r(l{z}) =1lx,Vz € X.
Then ¢ < ¢ for all p € Q(X).

Definition 2.4 [9,10] A nonempty subset U of Q(X) is
called a Hutton (L, ®)-uniformity on X if it satisfies the
following conditions:

(U1)If¢ < ¢ with € Uand 9 € Q(X), then) € U.

(U2) For each ¢, € U, ¢ ® ¢p € U.

(U3) For each ¢ € U, there exists 1 € U such that
Yoy <¢.

(U4) For each ¢ € U, there exists ¢~ € U.
The pair (X, U) is said to be a Hutton (L,®)-uniform
space.

Definition 2.5 [9,10] Let E(X x X) = {u € LX*¥X |
u(z,z) = 1} be a subset of LX*X_ A nonempty subset
D of E(X x X) is called an (L, ®)-uniformity on X if it
satisfies the following conditions:

DO Ifu < vwithu € Dandv € E(X x X), then
v € D.

(D2) Foreachu,v € D,u®v € D.

(D3) For each u € D, there exists v € D such that
vowv < u where

)=V (v(z,2) ©v(z,y)).

zeX

vou(z,y

(D4) For each u € D, there exists u® € U where

u®(z,y) = u(y, ).
The pair (X, D) is said to be an (L, ®)-uniform space.

Theorem 2.6 [9,10] We define a mapping T" :
X) — Q(X) as follows:

E(X x

LN = V M) oulz,y)

reX

Then we have the following properties:
(1) Foru € E(X x X), I'(u) € Q(X).
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(2) T’ has a right adjoint mapping A : QX) —

E(X x X) as follows:

(3)ToA =1y andAol = E(X x X).

Theorem 2.7 [9,10] Let u,uy,up € E(X X X). Then we
have the following properties:

(D) Ifuy < ug, T'(ug) < Tug).

(2) I‘(ul ® ’UQ) < F(Ul) ® F(Uz)

B)TI(1a) =1px.

@ T(u)~! =T(w°).
G) T(w) (A - 1) = T(w)~(\) — L, for all
AeLX.

(6) T'(u; o ug) = I'(ug) o T'(uy).
(NT(aou) = a0 (u)
(8) If u is an G-equivalence relation on X, then

(C(u) ™ = [(u) oT'(u) =

Theorem 2.8 [9,10] Let ¢, ¢1, 2 € Q(X). Then we have
the following properties:

(D) If ¢1 < ¢2, then A(p1) < A(d2).

(2) A(#1) © A(p2) = A1 @ ¢2).

() A(lrx) = 1a.

@ A(¢)° = Alp™).

(5) A(¢1) o A(p2) = A2 0 ¢1).

6) Ala © ¢) = a © A().

MDIfdpod = ¢and ¢ = ¢~ 1, then A(¢) is an ®-

equivalence relation.

I'(vw®) =T'(u), I(u).

Theorem 2.9 [9,10] Let D be an (L, ®)-uniform space.
We define a subset Up of (X)) as follows:

Up = {¢p € AX) | Jue D,I'(u) < ¢}
Then Up is a Hutton (L, ®)- uniformity on X.

Theorem 2.10 [9,10] Let U be a Hutton (L,Q)-
uniformity on X. We define a subset Dy of E(X x X)
as follows:

Dy = {u € E(X x X) | 3¢ € U, A(¢) < u}.

Then:
(1) Dy is an (L, ®)-uniformity on X.
(2) Dy, = Dand Up, =U.

Lemma 2.11 [10] Let f : X — Y be a function. We define
the image and preimage operators

£7 1 (WOED o (LV)ED ) e () ED S (LX)
such that for each ¢ € (L*)E™) and 4 € (LY YY) for

all y1, iy, pi2 € L, py, p2 € LY,

7 () = (£~ 0 do f7)0) = F~(¢(f (0))),
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FE@) ) = (f oo 7)) = £~ (™ (1))-

For each 1, 91,02 € QYY) and ¢1,¢2 € QUX), we
have the following properties.

(1) The pair (f=,f<) is a Galois connection; i.e.,
f7Af

) [~ (1 @ p2) < f7 (1) © f7 (u2) with equality if
f is injective and f~ (p1 © p2) = [ (p1) © f ™ (p2).

3 f<=('l,/)) € Qx.

(@) If 1 < iy, then f<(31) < [ (2).

(5) F= (1) 0 F=(th2) < £ (1 0 ba) with equality if
f is onto.

©) (W)t =f=@@") ex.

D @)@ F (W) = F (Y1 ®@Y2) and f7(41)®
[7(d2) > f7 (41 © $2).

LX(S) FoE@)) W) < ™ (W), for all p €

Lemma 2.12 [10] Let f : X — Y be a function. For each

v,v1,v2 € E(Y xY),¢ € QY) and A € LX, we have:
M) F=(0@)) = f~oT(w) o f~ = T((f x H)~(v)).
@ (f x N (A@) = AF=(9)).

f)J?))I;((f x f)~(v*)) = T(((f x )~ (v))*) =T((f x
@) (fx ) (10v) = (fx )T (v1)O(f x )~ (v2),
S (fx )~ (@) o (f x f)~(v) <(f x )~ (vou)

Definition 2.13 [9,10] (1) Let (X,U;) and (Y,Us) be
Hutton (L, ®)-uniform spaces. A function f : (X, U;) —
(Y, Us) is H-uniformly continuous if f< () € Uy, for
every ¥ € U,.

(2) Let (X, D;) and (Y, D3) be (L, ©®)-uniform spaces.
A function f : (X,D;) — (Y, D) is uniformly continu-
ous if (f X f)~(v) € Dy, for every v € Da.

3. Topologies induced by two types uniform
spaces

Definition 3.1 A subset T of L* is called an (L,®)-
topology on X if it satisfies the following conditions:

(T1) 1x,15 € T.

(T2)If A, A2 € T, then A\; ® A2 € T.

(T3)If Xy, Mg € T, then Ay A X € T.

(T4)If \; € Tforalli € T, then (V,cp Ai) € T
The pair (X, T) is called an (L, ®)-topological space.

An (L, ®)-topological space is called enriched iff it sat-
isfies:

E)IfAeT, thena® e T.

Let (X, T;) and (Y, T2) be (L, ®)-topological spaces.
A function f : (X,T:) — (Y,T:) is L-continuous if
f(A) € Ty, forevery A € Ta.
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Definition 3.2 A function I : L¥ — L% is called an
(L, ®)-interior operator on X iff I satisfies the following
conditions:

an I(lx) = 1x.

12) I(\) < \.

M) IA G p) >IN © L)

A9 I(A A p) > I(A) AX(p).

The pair (X, I) is called an (L, ©)-interior space.

An (L, ®)-interior space (X, I is called topological if

(D) LI(\)) > I(A), VA € LX.

An (L, ®)-interior space (X, I) is called enriched if

B Lao))>a0I), Vae L e LX.

Theorem 3.3 (1) Let (X, T) be an enriched (L,0®)-
topological space. Define a map It : LX — L% as fol-
lows:

Ir(\) = \{peLX|p<A peT}h

Then I is an enriched topological (L, ®)-interior opera-
tor on X induced by T.

(2) Let (X,I) be an enriched topological (L,Q®)-
interior space. Define a subset 'T'y of LX by

Tr={Ae L | A <IN}

Then Ty is an enriched (L, ®)-topology on X induced by
L

(3 Ip, =Tland Ty, =T.
Proof. (1) Forall &« € L, A1, Az, A € LX, we have

It(A1) ©Ix(Xg)

=V{p e L¥ | p1 <A1, p1 €T}

OV{pa € LX | p2 < Ao, p2 €T}

<V{prOp2 | p1Op2 <M O X, p1©p2 €T}
<Ir(M @ A2).

a@IT()\)

=a0V{peL*|[p< A peT}
=V{aeop|laGp<Lad®) a®peT}
SIT(Ot@)\).

Other cases and (2) are similarly proved.

(3) Since I(\) € Ty and I(A) < A, by the definition of
It,, It (A) > I(A).

Suppose there exists A € L*X such that Iy, (\) £ I()).
Then there exists p € LX with p € Ty and p < A such that
p % I()). On the other hand, since p = I(p) < A, then
p = I(p) = I(XI(p)) < I(A). Itis a contradiction. Hence
I, <IL

Let £ € T. Then Ip() = p. Thus g € Ty, Let
w € Trp. Then Ip(u) = p € T. Hence Ty, = T.



Theorem 3.4 Let U be a Hutton (L, ®)-uniformity on X.
We define a mapping I : LX — LX as follows:

Iu() = \/{p € L* | 39 € U, 4(p) < A}

Then:
(1) Iy is an enriched topological (L, ®)-interior oper-
atoron X.

@

L(\) =V{peLX|3¢cU,g(s(p) <A}

L) =V{s(p) € L* |36 € U,4(8(p)) < A}
I3(\) =V{aOly |30 U,¢(a®lyy) <A}
L) =V{a0ln 39U, ¢(lyy) <a— A}

Then IU(/\) = IZ()\)forz = 1, 2, 3, 4,
(3) Ty, is an enriched (L, ®)-topology induced by U.

Proof. (1) (I1) Since ¢(1x) = 1x, we have Iy(lx) =
1x. '
(12) Since p < d(p) < A, Iy(A) < Aforall A € LX.
(I13) Suppose Iy (A ® i) # Iy (A) © Iy (p). By the def-
inition of Ity and (L4), there exist p,y € LX and ¢,% € U
with ¢(p) < A, ¥() < p such that

Iu(Aou) Zpor.
Since p @ ¢ € U,

(@YY pO7v) < d(p) ©Y(y) S A0,

Thus, Iy (A ©® p) > p ® «. It is a contradiction. Thus (I3)
holds.

(14) Suppose Iy(A A p) 2 Tu(A) A Tu(u). By the
definition of Iy (A) and a completely distributive lattice
L, there exist p,y € L* and ¢,9 € U with ¢(p) <
A, ¥() € p such that

Iy(AAp) Zp Ay

Since p @ ¢ € U, we have (¢ @ ¢)(pAY) < d(pA7) O

»(T) = ¢(p A v), simiarly (§© %) (p A7) < D(p A7) Tt
implis

(@YY AY) < dlpAv)Ap(p A7)
< o(p) AY(y) S AAp.

Thus, Iy (A A p) > p A ~y. Itis a contradiction. Thus (14)
holds.

(T) Suppose there exists A € LX such that
Iuy(Iu(A)) # Iu(A). By the definition of Iy (), there ex-
ist p € LX, ¢ € U with ¢(p) < X such that Iy(Iy (X)) 2
p.

On the other hand, since ¢ € U, there exists ¢ € U
with ¢ o ¢ < ¢. It implies ¥(¢(p)) < ¢(p) < A. By the
definition of Tyy()\), we have ¥(p) < Iu(A). By the defi-
nition of Iy (Iy(A)), it follows that Iy (Iy (X)) > p. Ttisa
contradiction. Hence, Iy (Iu())) > Iu(A).
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(E)

a@Iu(/\) )
=a0V{pe LX |34 € U,$(p) < A}
<V{{(aop) e L¥ |Fp e U, ¢(a@p) <a O A}
SIU(OAG/\).

(2) Let p € LX and ¢ € U such that ¢(p) < A. Since
¢ € U, there exists ¢ € U with 9 o ¢y < ¢ such that
(W o) (p) < ¢(p) < A Thus, Iy(A) < I;(A). Since
p < ¥(p), I, < I. Hence Iy(A) < Ii(A) < Ix(A).
Trivially, Io(\) < Iy ()). Hence Iy(A) =1 (A) = I2(A).

Trivially, Is(X) < Iy(A). Suppose I3(A\) 2 Iu()). By
the definition of Iy(\), there exist p € L*, ¢ € U with
#(p) < A such that I3(A) # p. Since p = V,cx p(2) ©
]-{z}>

3(p) = ¢(\/ p(2) @ 1y) =\ 6(p(2) © 11y) <A
z€X z€X
Put a, = p(z). Since ¢(a, © 1j,3) < Aforall z € X,
p = V,ex p(z) © 1y < I3(A). It is a contradiction.
Hence I3(A\) = Iy (A).
Since ¢(a © 1{35}) =a® (ﬁ(l{w}) < Miff qb(l{z}) <
a — A, we have I3 = 1,4.

Theorem 3.5 Let D be an (L, ®)-uniformity on X. We
define a mapping Ip : LX — L* as follows:

In(\) = \/{p € L¥ | Jue D,T(w)(p) < A}.

Then:
(1) Ip is an enriched topological (L, ®)-interior oper-
ator on X.

(2
In(\) = \/{a ©1g; | e D,a0u(y,-) <A}

(3) Ty, is an enriched (L, ®)-topology induced by D.
Moreover, Iy, = Ip.

@) If U is a Hutton (L,®)-uniformity on X, then
In, = Iu.

Proof. (1) (I1) Since I'(u)(1x) < 1x, we have Ip(1x) =
1x.

(12) Since p < T(u)(p) < A Ip(A) < A for all
e LX.

(I13) Suppose Ip (A © ) # In(A) ©@In(u). By the def-
inition of Ip and (L4), there exist p,v € LX and u,v € D
with I'(u)(p) < A, T'(v)(y) £ p such that

Ip(AoOwu) Z2p07.

Since T'(u), T'(v) € Q(z) from Theorem 2.6(1) and u®Gv €
D, by Theorem 2.7(2), we have:

Twov)(pey) <T(u) @T(v)(po7)
<T(u)(p) ©T()(7) < AOp.
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Thus, Ip(A © p) > p ® 7. Itis a contradiction. Thus (I3)
holds.

(14) Suppose Ip(A A ) # Ip(A) A Ip(p). By the
definition of Ip()A) and a completely distributive lattice
L, there exist p,y € L* and u,v € D with I'(u)(p) <
A, T'(v)(y) € w such that

In(AAp) ZpA7.
Since u ® v € D, by Theorem 2.7(2),

Luov)(pAy) <T(u)@T(v)(p A7)
< T(u)(pAv) AT(w)(pAy) < T(u)(p) AT(v)(7)
<A p.

Thus, Iy(A A p) > p A ~. Itis a contradiction. Thus (14)
holds.

(T) Suppose there exists A € L* such that
In(Ip()\)) # In()\). By the definition of Ip(}), there
exist p € L%, u € D with I'(u)(p) < A such that
In(In(A)) Z p.

On the other hand, since © € D, there exists v € D
with v o v < u. It implies, by Theorem 2.7(6),

I(v) o T(v)(p) =T(vov)(p) <T(u)(p) <A

By the definition of Ip()), we have I'(v)(p) < In(A). By

the definition of Ip(Ip (X)), it follows that Ip(In(A)) >

p. It is a contradiction. Hence, In(Ip(A)) > In(A).
(B)Fora € Land A € L,

a@ID(/\)

=a0V{pe L* | FueD,I(u)(p) < A}
<V{(@op) e L* | Fue D, a0 (u)(p) <a @A}
<V{(e®p) e LX |FueD,T(u)(a®@p) <a@A}
§ID(CY®)\)

(2) Since T'(u) € 2(X), by I3 of Theorem 3.4(2), we
have

Pu)(@@1yy) = Veex (@0 1)) (@) O ulz, -)
= aOu(y, -)-

It implies

In(A)
= V{a 01y, | Fu e D,T(u)(a® l{y}) < A}
=V{a01ly | ueD,adu(y,—) < A}

(3) By Theorem 3.3 and (1), Ty, is an enriched (L, ®)-
topology induced by D.

For u € D with I'(u) < ¢, ¢(p) < A implies
T(u)(p) < ¢(p) < A. Thus, Iy, <Ip.

For u € D with T(u)(p) < A, since I'(u) € Up,
IUD > Ip.

(4) For ¢ € U with ¢(p) < A, A(¢) € Dy. So,
T(A(P))(p) = ¢(p) < A. Thus, Ip, > Iy.

For u € D with I'(u){(p) < A, by the definition
of Dy, there exists ¢ € U such that A(¢) < u. So,

T(A(¢))(p) = ¢(p) < T'(u)(p) < A Hence Ip,, < Iu.
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Example 3.6 Let X = {z,y, 2} be asetand ([0,1],®) an
biquantale defined by z ® y = max{0,z + y — 1} (ref.[4-
6,141).

Define ¢ € Q(X) as follows:

d(1izy) = 0(1gyy) = Loy, 0(11zy) = d(1zy)

Since

pRd(1(zy) = R d(1yy) = Lz} 9@ S(1(2}) = 121,

by Lemma 2.3(2), ¢ @ ¢ = ¢. We have ¢ o ¢ = ¢ because

pod(lizy) = dod(lgyy) = Lz}, B0 B((112})) = 1z

Since

¢_v1(1{x}) = ¢—1(1{y}) = 1{z,y}7¢_1(1{2}) = 1023,

Hence ¢~ ! = ¢.

(1) Define U = {¢p € UX) | ¢ < 9}. ThenUisa
Hutton (L, ®)-uniformity on X.

For each A € LX, by I3 of Theorem 3.4,

Iu(A)(z) = Tu(AN)(y) = AM@) AMY), Tu(A)(z) = Az).
‘We obtain

T, = {a@lX,AELX | Mz) = My) = a,

A(y) = b,Va,b,a € L}.

(2) We obtain Dy = {u € E(X x X) | A(¢) < u}.
Since ¢ 0 ¢ = ¢ and $~! = ¢, by Theorem 2.8(7), A(¢) is
an (®-equivalence relation such that

A(¢)($,ZE) =1, A(¢)(x’y) =1, A(¢)(.’E,Z) =0

A¢)(y,z) =1, M)y, 9) =1, A(¢)(y,2) =0

A(@)(z,2) = 0, A(@)(2,y) =0, A(d)(2,2) =1

Furthermore, A(¢) o A(¢) = A(¢), A(p™!) = A(9)® =
A($) and A(#) © A() = A($ ® ¢) = A(4). Hence Dy
is an (L, ®)-uniformity on X.

(3) For each A € L%, by Theorem 3.5(2),

Iny(A) = (@@ 1)) V(@O 1)) V (8O 1(z))-
where a = AMz) A M(y), B = A(z). Hence Ip,, = Iu.

Theorem 3.7 Let, (X,U) and (Y, V) be (L, ®)-Hutton -
uniform spaces. Let f : (X,U) — (Y, V) be H-uniformly
continuous. Then we have the following properties.

M) fF~(@v(N) <Tu(f~(N)), foreach A € LY.

) f: (X, T1y,) — (Y, Ty ) is L-continuous.



Proof. (1) Since f<(¢)(f(p)) < f(¢(p)), we have

f=@v (X))

=1 (Vie 13w € V, v(p) < A})

<V{F=(p) | f=(®(0) < f7(N), f(¥) € U}

SV~ | =) () < f= (),

<Tu(f~(N))-

(2) Since A < Iy (X) implies f—(A) < Iy(f—(A))
from (1), for each A € Ty,,, we have f~ () € Tyy,.

Theorem 3.8 Let (X, D1) and (Y, D2) be (L, ®)-uniform
spaces. Let f : (X,Dy) — (Y,D32) be L-uniformly con-
tinuous. Then:

(W Ip, (f~(p)) > f~ (Ip,(p)). for eachp € L.
) f: (X, T1p,) — (Y, T1p,) is L-continuous.

Proof. (1) Put A
T'(v)(y) < p implies

L((f x H=@FM)

fo(y) from Lemma 2.12(1),

F@@) M)
fTE)M) < f(p).

Since (f x f)~(v) € U forv € V, we have

f=(Ip,(p))
=f~(V{yeL* |T(w)(v) < p, veEV})
=V{f~(v) e LX |T(v)(v) < p, vV}
SV~ e X | T((f x /=@~ () < F (o),
(f x f)y~(v) €U}
<Ip,(f~(p)).

(2) From (1)and Theorem 3.3, Ip,(p) > p implies
In, (f~(p)) = & (p). It is easily proved.

<
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