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Some characterizations of interval-valued Choquet price functionals
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Abstract

In this paper, we define an interval-valued Choquet price functional which is a useful tool as the price of an insurance
contract with ambiguity payoffs and investigate some characterizations of them. Moreover, we show that the insurance
price with ambiguity payoffs has an interval-valued Choquet integral representation with respect to a capacity.
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1. Introduction

Recently, in the papers([15,16,17,18]), they have been
studied Choquet price in insurance as alternative as tra-
ditional pricing principles in insurance. We note that
the Choquet integral is nonlinear generalization of the
Lebesgue integral and has several properties that make it
especially suitable for pricing insurance contracts.

We recall that the set-valued Choquet integral was first
introduced by Jang, Kil, Kim and Kwon([5]) and restud-
ied by Zhang, Guo and Lia([20]), and that theory about
set-valued integrals has drawn much attention due to nu-
merous applications in mathematics, economics, informa-
tion theory, expected utility theory, and risk analysis. In
many papers([5,6,7,8,9,10,11,19,20]), they have been stud-
ied some properties of set-valued Choquet integrals and
interval-valued Choquet integrals.

In this paper, we will define interval-valued Choquet
price functionals and investigate some characterizations of
them. We also show that the insurance price with ambigu-
ity payoffs has an interval-valued Choquet integral repre-
sentation with respect to a capacity. This constraction is a
useful tool to form Choquet price in insurance market with
ambiguity payoffs.

2. Preliminaries and Definitions

In order to construct interval-valued Choquet price
which describe the behavior of an insurance market with

ambiguity payoffs, we list the following definitions and ba- -

sic properties. We consider a two period market model
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where insurance contracts can be traded in the first period,
and contracts ambiguously pay off in the second period.
There are S possible states of the world at the second pe-
riod, indexed by s € = {1,2,---, S}. Then an ambigu-
ity payoff can be represented by an interval-valued function
X : Q — I(RT)\{0}, where R = [0, 00) and

I(R")={a=[a",a%]|a” <a't, a”,a" € RT}.
We denote B for the set of ambiguity payoffs which are
represented by interval-valued functions, B for the set of

payoffs which are represented by real-valued functions, 2
for the power set of 2.

Definition 2.1. (1) A set function 4 is called a capacity if
p(0) = 0, u(2) = 1, and p is satisfies monotonicity( with
respect to set inclusion), that is,

AC B = p(A4) < p(B).

(2) A set function p is said to be concave(convex) if for
any A, B € 28,

AU B) + u(AN B) < (2)u(4) + u(B).

(3) A capacity p is said to be lower semi-continuous if
for any increasing sequence {A,} C 29, we have

u(UpZiAn) = lim p(4y).

(4) A capacity u is said to be upper semi-continuous if
for any increasing sequence {A,} C 2 and u(41) < oo,
we have
u(n?=1An) = lim /I'(An)
n—o0

(5) A capacity u is said to be continuous if it is both
lower semi-continuous and upper semi-continuous.
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We note that a capacity y is often referred to as a fuzzy
measure with 4(Q2) = 1 and to as a distorted probability
measure. It is well-known that if p is a capacity, there
exists a non-decreasing function g : [0,1] — [0, 1] with
g(0) = 0 and g(1) = 1, and a probability measure P such
that ;x = g o P. Here, g is called a distortion function.

Let C(R") be the class of closed subsets of RT. We
denote a real-valued function X : © — R, a closed set-
valued function X : @ — C(R*) \ {0}.

Definition 2.2. ([3,4,12,13,14]) Let X,Y be nonnegative
measurable functions. We say that X and Y are comono-
tonic, in symbol X ~ Y if

X(w) < X(w') = Y(w) <Y(Ww')

for all w,w’ € Q.
Theorem 2.3. ([3,4,12,13,14]) Let X, Y, Z be nonnegative
measurable functions. Then we have

MHX~X,

QDX~Y=Y~X,

B)X ~aforalla € RT,
DX ~YandY ~Z= X~ (Y +2).

Theorem 2.4. ([3,4,12,13,14]) Let X,Y be nonnegative
measurable functions. Then we have the followings.
(HIf X <Y, then

©) / Xdu < (C) / Ydp.
(2)f AC Band A, B € B, then
(C)/ Xdu < (C)/ Xdpy.
A B
B X ~Yanda,be€ RT, then
©) / (aX +bY)du = a(C) / Xdu + b(C) / Ydu.

@DIE(XVY)w)=X(w)VY(w)and X \Y)(w) =
X(w) AY (w) for all w € €2, then

©) /X VYdu > (C) /Xdu v (C) /Ydu
and

©) / X AYdy < (C) / Xdu A (C) / Y.
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Definition 2.5. ([1,2]) A closed set-valued function X is
said to be measurable if for each open set O C R,

X 1O0)={we QX (w)NO #0} € N.

Definition 2.6. The Choquet integral of X with respect to
a capacity p is equal to

©) /A Xdu = {(0) /A XdulX € S(X)}

where S(X) is the family of measurable selections of X .

For completeness, we recall that the Choquet integral
of X € B with respect to p (see[3,4,12,13,14]) is equal to

©) / Xdy = /0 " s € QX (s) > ).

For any a € R*, we define a = [a,a]. Obviously,
a € I(RY).

Definition 2.7. If @ = [a—,a™],b = [b7,b7] € I(R"),
then we define:

M arb=[a" Ab",at AbT],

Qyavb=I[a" Vb ,at Vbt],

(3)a < bifand onlyifa~ < b~ and a* < bt,

(4)a < bifandonlyifd < band @ # b,

(5)a C bifandonlyif b~ < a~ < a* < bF.

Clearly, we have the following theorem for multiplica-
tion and Hausdorff metric on I(R™).

Theorem 2.8. (1)If we define a - b= {z-blz € a,y € b}
fora-b e I(R"), then we have
a-b=1[a"-b",at b7

@) Ifdy : I(RT) x I(R") — [0, 00) is a Hausdorff
metric, then we have

dp(a,b) = max{la~ —b~|,|at —b*|}.

Definition 2.9. Let X,Y be ambiguity payoffs. We say
that X and Y are comonotone, in symbol X ~ Y if

X(s) < X(s') = Y(s) <Y(s') for alls, s €.

Werecallthat X = [X—, Xt~V = [Y~,Y*]ifand
onlyif X~ ~Y and Xt ~ Y (see [11]).
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3. Main results

In this section, we will define an interval-valued Cho-
quet price functional which represents the price of an in-
surance contract with ambiguity payoffs and discuss some
characterizations of them. We recall that for any capacity
L, there exists a non-decreasing function

g:[0,1] — [0,1], with g(0) =0and g(1) =1,

and a probability measure P such that 4 = g o P.
Since a capacity p on a finite set ) is continuous, by
Theorem 3.16([20)],

© [ Xdu=10) [ X~du,(©) [ X*dul. (31

In order to establishing interval-valued Choquet price func-
tional, we need the following new definitions which are
generalized concepts of Axioms 1-4 in [17].

Definition 3.1. (1) An interval-valued price functional
H:B— I(RM)\ {0}

is said to be conditional state independent if it depends only
on its di§tribution. o
(2) H is said to be monotone if for any X,Y € B,

X<V = 8(X) < HT),
3 H is said to be comonotonic additive if for any
X,Y € B,
X~Y=HX4+Y)=HX)+H(Y).
(4) H is said to be continuous if for any X, € B,

lim  dg[A(X - [d1,do])s, H(X)] = 0

(d1,d2)—(0+,0%)
and

li dg[H(X Aldy,do)), H(X)] =0,
(dasda)s(0,0) [H(X Aldy,da]), H(X)]
where (X' — [dy,dy)) 4+ = [max(X
da,0)].

~ —d,0), max(X* —

The decumulative distribution function(ddf) of a payoff
X is denoted as

Sx(t) = p{w|X(w) > t}, t >0,
and ddf of an interval-valued payoff X is denoted as

Sz (t) = [Sx-(t), Sx+(t)]. (3:2)
We note that Definition 3.1(1) means the following prop-
erty o o

H(X)=H(X') if S = Sx..

Clearly, we have the following basic characterizations of
the interval-valued Choquet price functional.

Theorem 3.2. If we define the interval-valued Choquet
price functional H, : B — I(R")\{0} by

/Xdu,

then it is conditional state independent,
comonotonic additive.

H,(X) =

monotone,

Proof. Equation (3.1) implies that

/ X~dp, (C) / X+ dyl.

By the definition of Choquet integrals, it is conditional state
independent. If S5 = S/, by Equation (3.2),

SX— = SX/A and SX+ = SX/+.

By Axiom 1 in [17], we have

© [X~du=(0) [ x"au
and

) / X*du = (C) / X"t dp,

Thus we have

©) [ Xdu~

(©) / X',

By Equation (3.1), Thcor_cm 3.5(2) ({10]) and Theorem
4.3({10]), we obtain that H is monotone and comonotonic
additive.

Theorem 3.3. If an interval-valued price functional
=[H™,H"]: B - I(R")\{0}

satisfies Definition 3.1 (1),(2),(3),and (4), respectively, then
H~ and H™ are price functional from B to R™ as satisfy
Axiom 1,2,3,4 in [17], respectively.
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Proof. Suppose that H satisfies Definition 3.1 (1). Let
X1,X2,11,Y2 € B, SX1 = Syl, and SX2 = Sy2. If we
put

X = [Xl,XQ] and Y = [}/:[,YQ],

then X,Y € B and
Sx = [Sx,,5x,] = [Svy, Sv,] = Sy
Thus, by Definition 3.1 (1),
A(X) = B(Y).
This implies
H™(X;)=H (Y1) and HY(X2) = H'(Y2).

That is, H~ and H ™ satisfy conditional state independence
which is Axiom 1 in [17].

Suppose that H satisfies Definition 3.1 (2). Let
X1,X9,71,Y5 € B, X; <£Y; and X, < Ys. If we put

X = [X1,X,] and ¥ = [V, Y3,
then X,Y € B and by Definition 3.1 (2),
X<Y.
Thus, we have
H™(X1) < H (Y1) and H'(X3) < H'(Ys).

This implies H~ and H™ satisfy monotonicity which is
Axiom 2 in [17].

Suppose that H satisfies Definition 3.1 (3). Let
X1,X2, 11,2 € B, X, ~Y; and X; ~ Y. If we put

X =[X1,X;) and Y = [V}, Y3),
then X,Y € B and X ~ Y By Definition 3.1 (3),
HX+Y)=HX)+H(®Y).
Thus we have
H (X;+Yh)=H (X1)+ H (1)

and
H_(X2 + Yg) = H_(Xz) + H_(Yz)
This implies that H~ and H ~ satisfy comonotonic additiv-
ity which is Axiom 3 in [17].
Suppose that H satisfies Definition 3.1 (4). Let
X1,X2 € B. If we put X = [X;,X5] and dq,d> > 0,
then X € B and

- H (X - 2(X)] =
(dl,d2)gr(lo+,0+) dH[H(X [dl’dz])-i-a ( )] 0

and

(dl,dle)IE(O,O) H[ ( [ 1 2]) ( )]
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This implies that
lim dy[H (X1 —di)4, H (X1)] =0
d1—>0+

and
lim dy[H™ (X1 Adi)y, H (X1)] =0,
d1—>0+
lim dy[H™ (Xp—d)4, H (X2)] =0
d2—->0+
and v

lim dy[H (X2 Ad2)y,H™ (X2)] =0.
(12—’0+

That is, H~ and H™ satisfy continuity which is Axiom 4

in [17].

Theorem 3.4. If an interval-valued price functional
:B - I(RH\{0}

satisfies Definition 3.1 (2)-(4), then there exists a unique
monotone interval-valued set function ¥ = [y1,72] on B
such that

H(X) = (0) [ Xay
where v, and -2 are monotone set functions on B and

© [ Xav=1©) [ X dn(©) [ X*an)

Proof. Suppose that H satisfies Definition 3.1 (2)-(4).
Then Theorem 3.3 implies that H~ and H* satisfy Axiom
2-4in [17]. Thus, by Theorem 1([17]), there exist uniquely
monotone set-functions y; and 2 such that

H~(X) = (C) / Xdv,, forall X € B
and
H*(X) = (C) / Xdya, forall X € B.

If we put 5 = [71, 72|, then clearly,  is monotone interval-
valued set functions on B. For any X = [X;, X»] € B,

H(X) =[H (X7),HHX")]

[(C) [ X~dm, (C) [ X+dy,]
=(0) [ Xdy.

By the uniqueness of ; and <2, we obtain the unique-
ness of 7.

We remark that Theorem 3.4 means insurance price
with ambiguity payoffs is represented by interval-valued
Choquet price functional.



Some characterizations of interval-valued Choquet price functionals

References

[1] J. Aubin, Set-valued analysis, 1990, Birkauser Boston.

2] R. J. Aumann, Integrals of set-valued functions, J.
Math. Anal. Appl. 12 (1965), 1-12.

[3] M.]. Bilanos, L.M. de Campos and A. Gonzalez, Con-
vergence properties of the monotone expectation and

its application to the extension of fuzzy measures,
Fuzzy Sets and Systems 33 (1989), 201-212.

(4] LM. de Campos and M.J. Bilanos, Characteriza-
tion and comparison of Sugeno and Choquet integrals,
Fuzzy Sets and Systems 52 (1992), 61-67.

[5] L. C. Jang, B.M. Kil, Y.K. Kim and J. S. Kwon, Some
properties of Choquet integrals of set-valued functions,
Fuzzy Sets and Systems 91 (1997), 95-98.

[6] L. C. Jang and J. S. Kwon, On the representation of
Choquet integrals of set-valued functions and null sets,
Fuzzy Sets and Systems 112 (2000), 233-239.

[7]1 L.C. Jang, T. Kim and J.D. Jeon, On set-valued Cho-
quet intgerals and convergence theorems, Advanced
Studies and Contemporary Mathematics 6(1) (2003),
63-76.

[8] L.C. Jang, T. Kim and J.D. Jeon, On set-valued Cho-
quet intgerals and convergence theorems (11), Bull. Ko-
rean Math. Soc. 40(1) (2003), 139-147.

[9] L.C. Jang, T. Kim and D. Park, A note on convexity
and comonotonically additivity of set-valued Choquet
intgerals, Far East J. Appl. Math. 11(2) (2003), 137-
148.

[10] L.C. Jang, Interval-valued Choquet integrals and
their applications, J. of Applied Mathematics and com-
puting 16(1-2) (2004), 429-445.

[11] L.C. Jang, The application of interval-valued Cho-
quet integrals in multicriteria decision aid, J. of Ap-
plied Mathematics and computing 20(1-2) (2006), 549-
556.

f12] T. Murofushi and M. Sugeno, An interpretation of
Jfuzzy measures and the Choquet integral as an integral

with respect to a fuzzy measure, Fuzzy Sets and Sys-
tems 29 (1989), 201-227.

[13] T. Murofushi and M. Sugeno, A theory of Fuzzy mea-
sures: representations, the Choquet integral, and null
sets, J. Math. Anal. and Appl. 159 (1991), 532-549.

[14] T.Murofushi and M. Sugeno, RSome quantities rep-
resented by Choquet integral, Fuzzy Sets and Systems
56 (1993), 229-235.

[15] A.De Waegenare, R. Kast, A. Laped, Choquet pric-
ing and equilibrium, Insurance; Mathematics and Eco-
nomics 32 (2003), 359-370.

[16] A. De Waegenare, P. Wakker, Nonmonotonic Cho-
quet integrals, J. of Mathematical Economics 36
. (2001), 45-60.

[17] S.S. Wang, V.R. Young, and H.H. Panjer, Axiomatic
characterization of insurance prices, Insurance; Math-
ematics and Economics 21 (1997), 173-183.

[18] J. Werner, Equilibrium in economics with incomplete
financial markets, J. of Economic Theory 36 (1985),
110-119.

[19] R. Yang, Z. Wang, P.-A. Heng, and K.S. Leung,
Fuzzy numbers and fuzzification of the Choquet inte-
gral, Fuzzy Sets and Systems 153 (2005), 95-113.

[20] D.Zhang, C.Guo and D. Liu, Set-valued Choquet in-
tegrals revisited, Fuzzy Sets and Systems 147 (2004),
475-485.

oA FAW) |

Lee-Chae Jang

3 32 L A5 A 28], Ak ol AL
2 g A A2 =EA dHHA 4
A4 AT et ASet wh

A 1548 5520053 9€9 %) =

E-mail : leechae.jang @kku.ac.kr

251



