Synthesis and Rietveld Structure Refinement of Mn-Tourmalines (Tsilaisite)

Mn-전기석(Tsilaisite)의 합성 및 리트벨트 구조분석

  • Grover John (Department of Geology, University of Cincinnati) ;
  • Choi Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • ;
  • 최진범 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Published : 2006.03.01

Abstract

Synthetic Mn-tourmalines (tsilaisite) were obtained by hydrothermal synthesis under the condition of 2 Kbar, $375{\sim}700^{\circ}C$, and 50 day-run-time with complete substitution of Mg in dravite by Mn (Mn%=0, 25, 50, 75, and 100%). They are all 6 samples containing Mn-tourmaline with some amounts of albite, spessartine, rhodocrosite, phlogopite etc, showing different synthetic condition of temperature and Mn composition. Synthetic Mn-tourmalines are of site deficiency in X-site ($0.53{\sim}0.68$) more than that of natural ones (approx. $0.2{\sim}0.3$) and show Mn cations occupying Y-site less than expected with initial experiments, leading to failure in synthesis of end-member tsilaisite. Rietveld structural refinements reveal that $R_{wp}$ ($R_{p}/R_{exp}$) is in the range of 13.35 and 18.62%, $R_{B}$ and S (CofF) are $4.85{\sim}6.25%$ (S-18: 8.57%), $1.31{\sim}1.59$ (S-18: 1.81), respectively. Unit cell parameters (space group R3m, z=3) are ${\alpha}=15.8994\;{\AA}$ and $c=7.1846\;{\AA}$ in average (S-18: ${\alpha}=15.9491\;{\AA},\;c=7.1773\;{\AA}$). Average bond lengths of and are $2.67{\sim}2.69\;{\AA}$ (S-18: $2.65\;{\AA}$) and $2.00{\sim}2.02\;{\AA}$ (S-18: $1.96\;{\AA}$), respectively. Ditrigonality (${\delta}$) are in the range of 0.022 and 0.031 (S-18: 0.061), indicating degrading symmetry with increase of Mn content.

2 Kbar, $375{\sim}700^{\circ}C$ 조건하에서, 드라바이트의 Mg를 전 구간 치환하는 Mn 조성(Mn%=0, 25, 50, 75, 및 100%)을 가지고 열수법으로 약 50일간 성장시켜 Mn-전기석(tsilaisite)을 합성하였다. 그 결과, 조성별로 생성온도가 다른 6개의 합성 전기석이 얻어졌으며, 앨바이트, 스페샤틴, 능망간석, 금운모 등 다양한 불순물이 함께 생성되었다. 합성 Mn-전기석의 X-자리의 자리결손($0.53{\sim}0.68$)이 천연산(약 $0.2{\sim}0.3$)보다 높게 나타났으며, Y-자리의 Mn mole wt.%는 예상보다 낮은 값을 보이며, 단종 성분의 tsilaisite를 합성하지 못했다. 다양한 복합상으로 이루어진 분말 합성 전기석에 대해 리트벨트 구조분석을 실시하였다. $R_{wp}$값은($R_{p}/R_{exp}$)은 $13.35{\sim}18.62%$의 범위를 보여주며, $R_{B}$ 값은 $4.85{\sim}6.25%$ (S-18: 8.57%), S (GofF) 값은 $1.31{\sim}l.59$ (S-18: 1.81)으로 각각 나타났다. 단위포의 평균값은 공간군 R3m (z=3)으로 ${\alpha}=15.8994\;{\AA},\;c=7.1846\;{\AA}$이며, S-18은 ${\alpha}=15.9491\;{\AA},\;c=7.1773\;{\AA}$이다. 평균 값은 $2.67{\sim}2.69\;{\AA}$ (S-18: $2.65\;{\AA}$), 평균 값은 $2.00{\sim}2.02{\AA}$ (S-18: $1.96\;{\AA}$)으로 각각 계산되었으며, 대칭도(ditrigonality)를 나타내는 ${\delta}$값을 보면 $0.022{\sim}0.031$ (S-18: 0.061)의 범위를 가지는데 Mn 함량이 높아지면서 대칭도가 낮아진다.

Keywords

References

  1. Barton, R.,Jr. (1969) Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines. Acta Crystal., B25, 1524-1533
  2. Berar, J.F. and Lelann, P. (1991) E.S.D.'s and estimated probable error obtained in Rietveld refinement with local correlations. J. Appl. Crystal., 24, 1-5 https://doi.org/10.1107/S0021889890008391
  3. Buerger, M.J., Burnham, C.W., and Peacor, D.R. (1962) Assessment of several structures proposed for tourmaline. Acta Crystal., 15, 583-590 https://doi.org/10.1107/S0365110X62001486
  4. Burns, P.C., MacDonald, D.J., and Hawthorne, F.C. (1994) The crystal chemistry of manganese-bearing elbaite. Can. Mineral., 32, 31-41
  5. Burt, D.M. (1989) Vector representation of tourmaline compositions. Am. Mineral., 74, 826-839
  6. Choi, J.B. and Hawthorne, F.C. (2002) Characterization of tourmaline crystals by Rietveld and single-crystal structure refinement: A comparative study. Geoscience J., 6, 237-243 https://doi.org/10.1007/BF02912694
  7. Donnay, G. and Barton, R.,Jr. (1972) Refinement of the crystal structure of elbaite and the mechanism of tourmaline solid solution. Tschermar. Mineral. Petrol. Mitt., 18, 273-286 https://doi.org/10.1007/BF01082837
  8. Dunn, P.J., Fleischer, M., Langley, R.H., Shigley, J.E., and Zilczer, J.A. (1985) New Mineral Names: Tsilaisite. Am. Mineral., 70, 877-878
  9. Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V., and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mossbauer study of Fe valence and site occupancy. Am. Mineral., 83, 848-864 https://doi.org/10.2138/am-1998-7-817
  10. Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F.,Jr., Wright, S.E., Brandstatter, F., and Marler, B. (2002) Polyhdron distortion in tourmaline. Can. Mineral. 40, 153-162 https://doi.org/10.2113/gscanmin.40.1.153
  11. Ertl, A., Hughes, J.M., Brandstatter, F., Dyar, M.D., and Prasad, P.S.R. (2003a) Disordered Mg-bearing olenite from a granitic pegmatite at Goslarn, Australia: A chemical, structural, and infrared spectroscopic study. Can. Mineral., 41, 1363-1370 https://doi.org/10.2113/gscanmin.41.6.1363
  12. Ertl, A., Hughes, J.M., Prowatke, S., Rossman, G.R., London, D., and Fritz, E.A. (2003b) Mn-rich tourmaline from Australia: structure, chemistry, optical spectra, and relations to synthetic solid solutions. Am. Mineral., 88, 1369-1376
  13. Foit, F.F.,Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. Am. Mineral., 74, 422-431
  14. Foit, F.F.,Jr. and Rosenberg, P.E. (1979) The structure of vanadium-bearing tourmaline and its implications regarding tourmaline solid solutions. Am. Mineral., 64, 788-798
  15. Foit, F.F.,Jr., Fuchs, Y., and Myers, P.E. (1989) Chemistry of alkali-deficient schorls from two tourmaline-dumortierite deposits. Am. Mineral., 74, 1317-1324
  16. Fortier, S. and Donnay, G. (1975) Schorl refinement showing compositional dependence of the tourmaline structure. Can. Mineral., 13, 173-177
  17. Grice, J.E., Ercit, T.S., and Hawthorne, F.C. (1993) Povondravaite, a redefinition of the tourmaline ferridravite. Am. Mineral., 78, 433-436
  18. Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. Can. Mineral., 40, 789-797 https://doi.org/10.2113/gscanmin.40.3.789
  19. Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. (1993) Reassignment of cation site occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. Am. Mineral., 78, 265-270
  20. Henry, D.J. and Dutrow, B.L. (1996) Metamorphic toumaline and its petrologic applications. In Boron Mineralogy, Petrology, and Geochemistry (Eds. E.S. Grew and L.M. Anovitz). Chap. 10, Rev. in Mineral., 33, 503-558
  21. Henry, D.J., Dutrow, B.L., and Selverstone, J. (2002) Compositional asymmetry in replacement tourmaline-An example from the Tauern Window, eastern Alps. Geol. Mater. Research, 4, 1-18
  22. Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G., and Guidotti, C.V. (2000) Tetrahedrally coordinated boron in a tourmaline: Boron-rich olenite from Stoffhutte, Koralpe, Austria. Can. Mineral., 38, 861-868 https://doi.org/10.2113/gscanmin.38.4.861
  23. Kunitz, W. (1929) Die Mischungsreihen in der Turmalingruppe und die genetischen Beziehungen zwischen Turmalinen und Glimmem. Chemie der Erde. 4, 208-251
  24. MacDonald, D.J. Hawthorne, F.C., and Grice, J.D. (1993) Foitite, ${\square}[Fe^{2+}\;_2(Al,Fe^{3+})]Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{4}$, a new alkali-deficient tourmaline: Description and crystal structure. Am. Mineral., 78, 1299-1303
  25. Medaris, L.G.,Jr. and Fournelle, J.H. (2003) Tourmaline-bearing quartz veins in the Baraboo quartzite, Wisconsin: Occurrence and significance of foitite and 'oxy-foitite', Can. Mineral., 41, 749-758 https://doi.org/10.2113/gscanmin.41.3.749
  26. Morgan, G.B. and London, D. (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California, Contri. Mineral. Petrol., 136, 310-330 https://doi.org/10.1007/s004100050541
  27. Novak, M. (2000) Compositional pathways of tourmaline evolution during primary (magmatic) crystallization in complex (Li) pegmatites of the Moldanubicum. Czech Republic. Memorie della Societa Italiana di Science Naturali e del Museo Civico di Storia naturale di Milano, 30, 45-56
  28. Nuber, B. and Schmetzer, K. (1984) Structural refinement of tsilaisite (manganese tourmaline). Neues Jahrbuch fur Mineralogie, Monat., 301-304
  29. Post, J.E. and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray Diffraction data. In Modern Powder X-ray Diffraction (Eds. D. Bish and J. Post). Chap. 9, Rev. in Mineral., 20, 277-308
  30. Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Crystal., 2, 65-71 https://doi.org/10.1107/S0021889869006558
  31. Rosenberg, P.E. and Foit, F.F.,Jr. (1975) Alkali free tourmalines in the system $MgO-Al_{2}O_{3}-SiO_{2}-B_{2}O_{3}-H_{2}O$ (abstr.). Geol. Soc. Am. Abstr. Programs. 7, 1250
  32. Rosenberg.. P.E. and Foit, F.F.,Jr. (1979) Synthesis and characterization of alkali-free tourmaline. Am. Mineral., 64, 180-186
  33. Rossman, G.R. and Mattson, S.M. (1986) Yellow, Mn-rich elbaite with Mn-Ti intervalence charge transfer. Am. Mineral., 71, 599-602
  34. Sakata, M. and Cooper, J.J. (1979) An analysis of the Rietveld profile refinement method. J. Appl. Crystal., 12, 554-563 https://doi.org/10.1107/S002188987901325X
  35. Sakhivel, A. and Young, R.A. (1992) User's Guide to Programs DBWS-9006PC for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns. Unpubl., Georg. Inst. Tech
  36. Schmetzer, K. (1978) Vanadium III als Farbtrager bei Naturlichen Silicaten und Oxiden-ein Beitra zur Kristallchemie des Vanadiums. Ph.D. thesis, Unpub., Karl University, Heidelberg, Germany
  37. Schmetzer, K. and Bank, H. (1984) Crystal chemistry of tsilaisite (manganese tourmaline) from Zambia. Neues Jahrbuch fur Mineral. Monat., 1984, 61-69
  38. Schneider, M. (1993) WYRIET, version 3: Powder profile refinement and structure analysis package for personal computers. Unpubl., Starnbergerweg, Germany. J. Appl. Crystal., 2, 65
  39. Selway, J.B., Novak, M., Hawthorne, F.C., Cerney, P., Ottolini, L., and Kyser, T.K. (1998) Rossmanite, ${\Doteq}(LiAl_{2})Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{4}$, a new alkali-deficient toumaline: Description and crystal structure. Am. Mineral., 83, 896-900 https://doi.org/10.2138/am-1998-7-822
  40. Selway, J.B., Novak, M., Cerny, P., and Hawthrone, F.C. (2000a) The Tango pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. Can. Mineral., 38, 869-876 https://doi.org/10.2113/gscanmin.38.4.869
  41. Selway, J.B., Cerny, P., Hawthorne, F.C., and Novak, M. (2000b) The Tango pegmatite at Bernic Lake, Manitoba. XIV. Interal tourmaline. Can. Mineral., 38, 877-891 https://doi.org/10.2113/gscanmin.38.4.877
  42. Shigley J.E., Kane, R.E., and Manson, D.V. (1986) A notable Mn-rich gem elbaite tourmaline and its relationship to 'tsilaisite', Am. Mineral., 71, 1214-1216
  43. Tindle, A.G., Breaks, F.W., and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. Can. Mineral., 40, 753-788 https://doi.org/10.2113/gscanmin.40.3.753
  44. Walenta, K. and Dunn, P.J. (1979) Ferridravite, a new mineral of the tourmaline group from Bolivia. Am. Mineral., 64, 945-948
  45. Webster, R. (1983) Gems, their source, descriptions, and identification (4th Ed.). Butterworths, London
  46. Weiner, K.L. and Glas, M. (1985) Was ist Turmalin? Symmetrie, - Bauplan - Eigenschaften. Mineral. Munchen., 85, 3-14
  47. Werding, G. and Schreyer, W. (1984) Alkali-free tourmaline in the system $MgO-Al_{2}O_{3}-B_{2}O_{5}-SiO_{2}-H_{2}O$. Geochim. Coschim. Acta, 48, 1331-1344 https://doi.org/10.1016/0016-7037(84)90066-8
  48. Young, R.A. (1993) The Rietveld Method. IUCr., Oxford, 298p
  49. Young, R.A. and Wiles, D.B. (1982) Profile shape functions in Rietveld refinements. J. Appl. Crystal., 15, 430-438 https://doi.org/10.1107/S002188988201231X
  50. Young, R.A., Sakthivel, A., Moss, T.C., and Paiva-Santos, C. (2000) User's Guide to Program DBWS-9807a for Rietveld analysis of X-ray and neutron powder diffraction patterns. School of Physics, Georg. Inst. Tech., Atlanta, Georgia, 598p