Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes

키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가

  • Youm Kyung-Ho (School of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Yuk Yeong-Jae (School of Chemical Engineering, College of Engineering, Chungbuk National University)
  • 염경호 (충북대학교 공과대학 화학공학부) ;
  • 육영재 (충북대학교 공과대학 화학공학부)
  • Published : 2006.03.01

Abstract

Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

실리카 입자를 기공 형성제로 사용하여 다공성 키토산 및 키틴 막을 제조하였다. 다공성 막의 제조는 다음의 3단계 절차로서 수행되었다: (1) 키토산 용액에 실리카 입자를 첨가시켜 필름을 형성시킨 후, (2) 이 필름을 알카리 용액에 침지시켜 실리카 입자를 제거하여 다공성의 키토산 막을 제조하였으며, (3) 다공성 키토산 막을 acetic anhydride를 사용하여 아세틸화시킴으로서 다공성 키틴 막을 제조하였다. 물리적 강도가 우수하고, 적절한 순수 투과량을 갖는 다공성 키토산 막과 키틴 막의 최적 제막조건이 제시되었다. 단백질 친화성을 부여하기 위해 다공성 키토산 막에 반응성 염료인 Cibacron Blue 3GA를 고정화시켰으며, BSA 단백질 및 lysozyme 효소의 흡착실험을 수행하여 친화 키토산 막 및 키틴 막의 단백질 결합용량을 측정하였다. 친화 키토산 막의 BSA 단백질 결합용량은 약 22 mg/mL이었으며, 친화 키틴 막의 lysozyme 효소 결합용량은 약 26 mg/mL로서 이는 키토산 또는 키틴을 기반으로 하여 제조된 hydrogel bead의 단백질 결합용량보다 수${\sim}$수십 배 큰 값으로서, 향후 막여과 크로마토그래피용 친화 막으로의 효과적인 활용이 기대된다.

Keywords

References

  1. J. F. Kennedy, 'Recovery Processes for Biological Materials', John Wiley & Sons, New York, NY (1993)
  2. P. D. G. Dean, W. S. Johnson, and F. A. Middle, 'Affinity Chromatography; a Practical Approach', IRL Press, Oxford (1985)
  3. F. H. Arnolods, H. W. Blanch, and C. R. Wilke, 'Analysis of affinity separation', Chem. Eng. J., 30, B9 (1985) https://doi.org/10.1016/0300-9467(85)80016-2
  4. R. P. W. Scott, 'Liquid Chromatography Column Theory', John Wiley & Sons, New York, NY (1992)
  5. S. Brandt, R. A. Goffe, S. B. Kesseler, J. L. O'Conner, and S. E. Zale, 'Membrane-based affinity technology for commercial scale purification', Biotech., 6, 779 (1988) https://doi.org/10.1038/nbt0788-779
  6. K. G. Brief and M. R. Kula, 'Fast protein chromatography on analytical and preparative scale using modified microporous membrane', Chem. Eng. Sci., 47, 141 (1992) https://doi.org/10.1016/0009-2509(92)80208-T
  7. K. J. Lee and K. H. Youm, 'A study on affinity chromatography of protein by flat and hollow-fiber membrane module', Membrane J., 8, 50 (1998)
  8. X. Zeng and E. Ruckenstein, 'Membrane chromatography: preparation and applications to protein separation', Biotechnol. Prog., 15, 1003 (1999) https://doi.org/10.1021/bp990120e
  9. S. Hirano and S. Tokura, 'Chitin and Chitosan', Proceedings of 2nd International Conference on Chitin and Chitosan, Sapporo, Japan (1982)
  10. X. Zeng and E. Ruckenstein, 'Control of pore sizes in macroporous chitosan and chitin membranes', Ind. Eng. Chem. Res., 35, 4169 (1996) https://doi.org/10.1021/ie960270j
  11. R. K. Scopes, 'Protein Purification', 2nd ed., Springer-Verlag, New York, NY (1987)
  12. S. S. Nam, B. Y. Seo, and D. S. Lee, 'Dye Chemicals', Boseong Publication Co., Seoul, pp. 261 (1993)
  13. S. Angel and P. D. G. Dean, 'The effect of matrix on the binding of albumin to immobilized Cibacron Blue', Biochem. J., 167, 301 (1977) https://doi.org/10.1042/bj1670301
  14. T. Atkinson, P. M. Hammond, R. D. Hartwell, P. Hughes, M. D. Scawen, R. F. Sherwood, D. A. P. Small, C. J. Bruton, M. J. Harvey, and C. R. Lowe, 'Triazine-dye affinity chromatography', Biochem. Soc. Trans., 9, 290 (1981) https://doi.org/10.1042/bst0090290
  15. E. Ruckenstein and X. Zeng, 'Macroporous chitin affinity membranes for lysozyme separation', Biotech. Bioeng., 56, 610 (1997) https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<610::AID-BIT3>3.0.CO;2-Q
  16. G. K. Chambers, 'Determination of Cibacron Blue F3GA substitution in Blue Sephadex and Blue Dextran-Sepharose', Anal. Biochem., 83, 551 (1997) https://doi.org/10.1016/0003-2697(77)90058-6
  17. C. R. Lowe and J. C. Pearson, 'Affinity chromatography on immobilized dyes', Methods In Enzymol., 104, 97 (1994)
  18. T. Imoto and K. Yagishita, 'Chitin coated cellulose as an adsorbent of lysozyme-like enzymes: preparation and properties', Agric. Biol. Chem., 37, 465 (1973) https://doi.org/10.1271/bbb1961.37.465
  19. I. Safarik and M. Safarikova, 'Batch isolation of hen egg white lysozyme with magnetic chitin', J. Biochem. Biophys. Methods, 27, 327 (1993) https://doi.org/10.1016/0165-022X(93)90013-E