Induction of NADPH oxidases and antioxidant proteins by Porphyromonas gingivalis in KB cells

Porphyromonas gingivalis 감염된 구강상피세포에서 NADPH oxidase와 항산화단백의 발현

  • Kim, Min-Jeong (Dept. of Periodontology, Dept. of Oral Biochemistry, School of Dentistry, Chonnam National University) ;
  • Chung, Hyun-Ju (Dept. of Periodontology, Dental Science Research Institute, 2nd stage of BK21 for school of Dentistry, School of Dentistry, Chonnam National University) ;
  • Park, Byung-Ju (Dept. of Oral Biochemistry, Dental Science Research Institute, 2nd stage of BK21 for school of Dentistry, School of Dentistry, Chonnam National University) ;
  • Park, Hae-Ryoung (Dept. of Oral Biochemistry, Dental Science Research Institute, 2nd stage of BK21 for school of Dentistry, School of Dentistry, Chonnam National University) ;
  • Lee, Tae-Hun (Dept. of Oral Biochemistry, Dental Science Research Institute, 2nd stage of BK21 for school of Dentistry, School of Dentistry, Chonnam National University)
  • 김민정 (전남대학교 치의학전문대학원 치주과학교실, 구강생화학교실) ;
  • 정현주 (전남대학교 치의학전문대학원 치주과학교실, 치의학연구소, 2단계 BK 21) ;
  • 박병주 (전남대학교 치의학전문대학원 구강생화학교실, 치의학연구소, 2단계 BK 21) ;
  • 박해령 (전남대학교 치의학전문대학원 구강생화학교실, 치의학연구소, 2단계 BK 21) ;
  • 이태훈 (전남대학교 치의학전문대학원 구강생화학교실, 치의학연구소, 2단계 BK 21)
  • Published : 2006.12.31

Abstract

Porphyromonas gingivalis는 치주질환을 야기하는 독성세균으로서, 구강상피세포에 p. gingivalis가 감염되었을 때, 세포형태에 변화를 초래함으로 인해 방어기작이 작동하게 된다. 치주질환과 관련되어 생성된 활성 산소종의 소거에 관여하는 항산화성분은 p. gingivalis 이 감염된 구강상피세포에서 그 분포와 발현수준이 달라지리라 예상된다. 따라서 이번 연구에서는 구강상피세포(KB 세포)에 p. gingivalis가 감염되었을 때 야기되는 활성산소종과 이를 소거하는 역할을 하는 항산화단백들의 역할들을 규명하고자 하였다. 활성산소종 형성을 조절하는 NADPH oxidase 중 NOX4와 Rac1 전사체는 구강상피세포에서 p. gingivalis세균에 의해 증가하였으며 $gp91^{phox}$, Rac2, $p47^{phox}$$p67^{phox}$는 세균에 의한 변화가 관찰되지 않았다. 반면에 $p40^{phox}$ 전사체는 감소하는 경향을 보였다. NOX1 전사체는 p. gingivalis 처리 30분 후 감소하였다가 60분 후에는 다시 증가하는 양상을 보였다. 같은 시간에 NOX 활성화 단백인 NOXA1은 감소하고, NOX 구성단백질인 NOXO1은 증가하는 경향을 보였다. p. gingivalis가 감염된 구강상피세포를 방어하는 항산화단백 발현수준을 평가한 결과, SOD1, 2, 3 모두 p. gingivalis 처리시간에 따라 증가하는 양상을 보였다. GPx 발현 양상도 SOD와 유사하게 나타났다. $H_2O_2$를 소거하는 Prx는 감염된 KB 세포에서 Prx4와 Prx5가 4-6배 증가하는 것을 알 수 있었다. 반면 endocytosis 과정 중 $H_2O_2$ 생산은 변화되지 않았다. 이번 연구의 결과, p. gingivalis의 감염은 KB 세포의 NOX4와 Rac1의 NADPH oxidase 발현을 증가시켰으며, NOX1은 NOXA1과 NOXO1의 조절에 의해 영향을 받음을 알 수 있었다. 또한 항산화기작으로는 SOD, GPx, Prx가 증가하였는데, 이것은 Prx4와 Prx5가 중요한 역할을 할 것을 시사하였다.

Keywords

References

  1. Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol 1999;181:4905-4913
  2. Sharma A, Novak EK, Sojar HT et al. Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activator of murine platelets. Oral Microbiol lmmunol 2000;15:393-396 https://doi.org/10.1034/j.1399-302x.2000.150610.x
  3. Chapple lLC. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 1997;24:287-296 https://doi.org/10.1111/j.1600-051X.1997.tb00760.x
  4. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc BioI 1999;65:337-340 https://doi.org/10.1002/jlb.65.3.337
  5. Becky A Diebold, M. Bokoch, Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nature lmmunol 2001;2: 211-215 https://doi.org/10.1038/85259
  6. McCord JM, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J BioI Chem 1969; 244:6049-6055
  7. Sumimoto H, Ueno N, Yamasaki T, Taura M, Takeya R. Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins. Jap J Infect Dis 2004 ;57:S24-5
  8. Banfi B, Clark R A, Steger K, Krause K H. Two Novel Proteins Activate Superoxide Generation by the NADPH Oxidase NOXl. J BioI Chem 2003;278:3510-3513 https://doi.org/10.1074/jbc.C200613200
  9. Suh YA, Arnold RS, Lassegue B et al. Cell transformation by the superoxidegenerating oxidase Nod. Nature 1999;401:79-82 https://doi.org/10.1038/43459
  10. Takeya R, Ueno N, Kami K et al, Novel Human Homologues of $p47^{phox}$ and $p67^{phox}$Participate in Activation of Superoxideproducing NADPH Oxidases. J Biol Chem 2003;278:25234-25246 https://doi.org/10.1074/jbc.M212856200
  11. Mark TQ, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leuko BioI 2004;76:760-781 https://doi.org/10.1189/jlb.0404216
  12. Hosogi Y, Duncan MJ. Gene Expression in Porphyromonas gingivalis after Contact with Human Epithelial Cells. Infect Immun 2005;73:2327-2335 https://doi.org/10.1128/IAI.73.4.2327-2335.2005
  13. Kawahara T, Kohjima M, Kuwano Y et al. Helicobacter pylori lipopolysaccharide activates Rael and transcription of NADPH oxidase Noxl and its organizer NOXOl in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 2005;288:C450-C457 https://doi.org/10.1152/ajpcell.00319.2004
  14. Chae HZ, Chung SJ, Rhee SG. Thioredoxirrdependent peroxide reductase from yeast. J BioI Chem 1994;269:27670-27678
  15. Kang SW, Baines IC, Rhee SG. Characteriza -tion of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 1998;273:6303-6311 https://doi.org/10.1074/jbc.273.11.6303
  16. Lamont RJ, Jenkinson HF. Life Below the Gum Line: Pathogenic Mechanisms of Porphyromonas gingivalis. Microbiol Mol BioI Rev 1998;62:1244-1263
  17. Nisapakultorn K, RossK F, Herzberg MC. Calprotectin Expression In Vitro by Oral Epithelial Cells Confers Resistance to Infection by Porphyromonas gingivalis. Infect Immun 2001;69:4242-4247 https://doi.org/10.1128/IAI.69.7.4242-4247.2001
  18. Mosmman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  19. Gendron R, Grenier D, Maheu-Robert L. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect 2000;2:897-906 https://doi.org/10.1016/S1286-4579(00)00391-9
  20. Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev 2000;13:547-558 https://doi.org/10.1128/CMR.13.4.547-558.2000
  21. Njogore T, Genco RJ, Sojar HT, Hamada N, Genco CA. A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 1997;65: 1980-1984
  22. Houalet-Jeanne S. Pellen-Mussi S, TricotDoleux S, Apiou J, Bonnaure-Mallet M. Assessment of Internalization and Viability of Porphyromonas gingivalis in KB Epithelial Cells by Confocal Microscopy. Infect Immun 2001;69:7146-7151 https://doi.org/10.1128/IAI.69.11.7146-7151.2001
  23. Hakimuddin TS, Sharma A, Robert J. Genco. Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells. Infect Immu 2002;70:96-101 https://doi.org/10.1128/IAI.70.1.96-101.2002
  24. Charles ES, Wilson AC, De'Avlin Olguin, Marilyn SL, Dennis EL. Induction of B-Defensin Resistance m the Oral Anaerobe Porphyromonas gingivalis. Antimicrob Agents chemother 2005;49:183 -187 https://doi.org/10.1128/AAC.49.1.183-187.2005
  25. Duncan MJ, Nakao S, Skobe Z, Xie H. Interactions of Porphyromonas gingivalis with epithelial cells. Infect Immun 1993; 61:2260-2265
  26. Federico ER, Patrick JP. The Reactive Adventitia: Fibroblast Oxidase in Vascular Function. Arterioscler Thromb Vasc Bio 2002;22:1962-1971 https://doi.org/10.1161/01.ATV.0000043452.30772.18
  27. Mahadev K, Motoshima H, Wu X et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mll Cell Biol 2004;24:1844 -1854 https://doi.org/10.1128/MCB.24.5.1844-1854.2004
  28. Park HS, Lee SH, Park D et al. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor- induced production of H2O2. Mol Cell BioI 2004;24:4384-4394 https://doi.org/10.1128/MCB.24.10.4384-4394.2004
  29. Teshima S, Kutsumi H, Kawahara T, Kishi K, Rokutan K. Regulation of growth and apoptosis of cultured guinea pig gastric mucosal cells by mitogenic oxidase 1. Am J Physiol Gastrointest Liver Physiol 2000;279: G1169-G1176
  30. Teshima S, Rokutan K, Nikawa T, Kishi K. Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Gastroenterol 1998;115:1186-1196 https://doi.org/10.1016/S0016-5085(98)70090-3
  31. Kawahara T, Kuwano Y, Teshima-Kondo S et al. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 2004;172:3051-3058 https://doi.org/10.4049/jimmunol.172.5.3051
  32. Geiszt M, Lekstrom K, Witta J, Leto TL. Proteins Homologous to $p47^{phox}$ and $p47^{phox}$, Support Superoxide Production by NAD(P)H Oxidase 1 in Colon Epithelial Cells. J Biol Chem 2003;278:200060-20012
  33. Kuwano Y, Kawahara T, Yamamoto H et al, Interferon-${\gamma}$ activates transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol 2006;290:C433-C443
  34. Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998;273:15366-15372 https://doi.org/10.1074/jbc.273.25.15366
  35. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 2002; 9:387-399 https://doi.org/10.1016/S1097-2765(02)00445-8
  36. Brar SS, Kennedy TP, Sturrock AB et al. An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol 2002;282:C1212-C1224 https://doi.org/10.1152/ajpcell.00496.2001
  37. Brar SS, Corbin Z, Kennedy TP et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol 2003;285:C353-C369 https://doi.org/10.1152/ajpcell.00525.2002
  38. Geiszt M, Kapp JB, Varnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97:8010-8014 https://doi.org/10.1073/pnas.130135897
  39. James Chung-man Ho, Zheng S, Suzy AA, Comhair CF, Serpil CE. Differential Expression of Manganese Superoxide Dismutase and Catalase in Lung Cancer. Cancer Research 2001;61:8578-8585
  40. Bhor VM, Eaghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell BioI 2004;36:89-97 https://doi.org/10.1016/S1357-2725(03)00142-0
  41. Waddington ill, Moseley R, Embery G. Periodontal disease mechanisms, Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Diseases 2000;6:138-151 https://doi.org/10.1111/j.1601-0825.2000.tb00325.x
  42. Banmeyer I, Marchard C, Verhaeghe C et al. Overexpression of human peroxiredoxin5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides. Free Radic BioI Med 2004;36:65-77 https://doi.org/10.1016/j.freeradbiomed.2003.10.019
  43. Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kB activation. J BioI Chem 1997;272:30952-30961 https://doi.org/10.1074/jbc.272.49.30952
  44. Sea MS, Kang SW, Kim K et al. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 2000;275:20346-20354 https://doi.org/10.1074/jbc.M001943200
  45. Sea MS, Lee TH, Park ES. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide induced apoptosis in thyroid cells. J Biol Chem 2000;275:18266-18270 https://doi.org/10.1074/jbc.275.24.18266
  46. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 1999;45:101-112 https://doi.org/10.1016/S0168-8227(99)00037-6
  47. Kim TS, Sundaresh CS, Feinstein S1. Identification of a human cDNA clone for lysosomal type Ca2+-independent phospholipase A2 and properties of the expressed protein. J Biol Chem 1997;272: 2542-2550 https://doi.org/10.1074/jbc.272.4.2542
  48. Kang SW, Chae HZ, Sea MS et al. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-${\alpha}$. J BioI Chem 1998;273:6297-6302 https://doi.org/10.1074/jbc.273.11.6297
  49. Posperi MT, Ferbus D, Rouillard D, Goubin G, The pag gene product, a physiological inhibitor of c-abl tyrosine kinase, is overexpressed in cells entering S phase and by contact with agents inducing oxidative stress. FEBS Lett 1998;423:39-44 https://doi.org/10.1016/S0014-5793(98)00057-X
  50. Kim H, Lee TH, Park ES. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide induced apoptosis in thyroid cells. J Biol Chem 2000;275:18266-18270 https://doi.org/10.1074/jbc.275.24.18266
  51. Okada-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N. Peroxiredoxin IV is a secretable protein with heparin-binding roperties under reduced conditions. J Biol chem 2000;127:493-501
  52. Knoops B, Clippe A, Bogard C. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J BioI Chem 1999;274: 30451-30458 https://doi.org/10.1074/jbc.274.43.30451
  53. Hiroaki K, Ohtake M, Kurasawa I, Saito K. Intracellular production and extracellular release of oxygen radicals by PMNs and oxidativestress on PMNs during phagocytosis of periodontopathic bacteria. Odontol 2003; 91:13-18 https://doi.org/10.1007/s10266-003-0022-1