Profiling of genes in healthy hGF, aging hGF, healthy hPDLF and inflammatory hPDLF by DNA microarray

DNA microarray법을 이용하여 건강한 치은섬유모세포, 복제노화된 치은섬유모세포, 건강한 치주인대섬유모세포와 염증성치주인대섬유모세포에서 유전자 발현

  • Yun, Sang-Jun (Department of Periodontology, College of Dentistry, Chosun University) ;
  • Kim, Byung-Ock (Department of Periodontology, Oral Biology Research Institute, College of Dentistry, Chosun University) ;
  • Yun, Jeong-Hun (Oral Biology Research Institute, College of Dentistry, Chosun University) ;
  • Kang, Dong-Wan (Oral Biology Research Institute, College of Dentistry, Chosun University) ;
  • Jang, Hyun-Seon (Department of Periodontology, Oral Biology Research Institute, College of Dentistry, Chosun University)
  • 윤상준 (조선대학교 치과대학 치주과학교실) ;
  • 김병옥 (조선대학교 치과대학 치주과학교실, 구강생물학연구소) ;
  • 윤정훈 (조선대학교 치과대학 구강생물학연구소) ;
  • 강동완 (조선대학교 치과대학 구강생물학연구소) ;
  • 장현선 (조선대학교 치과대학 치주과학교실, 구강생물학연구소)
  • Published : 2006.09.30

Abstract

이 연구의 목적은 DNA microarray 분석법을 이용하여 건강한 사람치주인대섬유모세포, 건강한 사람치은섬유모세포, 복제노화된 사람치은섬유모세포, 염증성 사람치주인대 섬유모 세포의 유전자 발현 형태를 상호비교하고자 하였다. 환자의 동의하에 충치, 치주염이 없이 교정발치된 치아의 치주인대세포를 배양하여 건강한 치주인대섬유모세포로, 만성치주염으로 발거된 치아에서 채취하여 배양한 세포를 염증성 치주인대섬유모세포로 선정하였다. 구강에서 채취한 치은결체조직에서 배양한 사람치은섬유모세포를 일차 배양한 후 계대배양을 통해 복제 노화를 유도하였다. $-198^{\circ}C$의 액화질소에 저장되어 있던 2, 4, 8, 15, 16세대 세포를 실험에 이용하였다. 위의 모든 세포들은 60 mm 배양접시에서 세포들이 80-90%의 밀생이 될 때까지 5% $CO_2$, $37^{\circ}C$, 100% 습도의 배양기에서 2일 간격으로 10% FBS가 함유된 DMEM 세포 배양액을 교체하면서 세포를 배양하였다. Trizol Reagent (Invitrogen, USA)를 이용하여 제조회사의 지시에 따라 total RNA를 추출하였다. 18S RNA와 28S RNA를 확인한 후 DNA microarray 분석을 실시하였다. 4배수 이상의 변화양상을 비교시 상호 유전자 발현의 차이를 나타내었다. 건강한 사람치은섬유모세포(2세대)와 노화된 치은섬유모세포에서 가장 높은 발현변화를 나타낸 반면 DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination,은 건강한 치은섬유모세포에서 가장 높게 나타났다. 염증성 치은인대섬유모세포와 건강한 치주인대 섬유모세포를 비교시, Regucalcin은 염증성 치주인대섬유모세포에서 가장 높게 나타났고, Vascular cell adhesion molecule 1도 두 번째로 높게 나타났다. 건강한 치주인대섬유모 세포와 건강한 치은섬유모세포를 비교시, IL-11과 periostin이 치주인대섬유모세포에서 높은 발현을 나타낸 반면, Prostaglandin D2 synthase 21kDa과 Thioredoxin interacting protein은 치은섬유모세포에서 높은 발현을 나타내었다. 염증성 치주인대섬유모세포와 노화된 치은섬유모세포(15세대 이상)를 비교시 149개의 유전자가 유사한 발현 수준을 나타내었다. 이 연구는 노화, 염증, 세포 형태에 따라서 유전자 수준에서 가장 높거나 높은 수준 변화를 보이는 유전자가 다를 수 있음을 나타낸다. 향후, 치주염 환자들에서, 노염, 염증, 세포 특이성에 관한 유전자 표시지를 이용하여 진단하거나 치료에 응용하기 위해서는 더 많은 연구가 필요하리라 사료된다.

Keywords

References

  1. Polson AM, Caton J. Factors influencing periodontal repair and regeneration. J Periodontol 1982;53:617-625 https://doi.org/10.1902/jop.1982.53.10.617
  2. Kawanami M, Sugaya T, Gama H, et al. Periodontal healing after replantation of intentially rotated teeth with healthy and denuded root surfaces. Dent Traumatol 2001;17:127-133 https://doi.org/10.1034/j.1600-9657.2001.017003127.x
  3. Shimono M, Ishikawa T, Ishikawa H, et al. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 2003;60: 491-502 https://doi.org/10.1002/jemt.10290
  4. Silva TA, Rosa AL, Lara VS. Dentin matrix proteins and soluble factors: intrinsic regulatory signals for healing and resoption of dental and periodontal tissues. Oral Diseases 2004;10:63-74 https://doi.org/10.1111/j.1601-0825.2004.00992.x
  5. Melcher AH, On the repair potential of periodontal tissues. JP. 1976:47:256-260
  6. Park JC, Kim HJ, Jang HS, et al. Isolation and characterization of cultured human periodontal ligament fibroblastspecific cDNAs. Biochem Biophys Res Commun 2001;282:1145-1153 https://doi.org/10.1006/bbrc.2001.4694
  7. Kasasa SC, Soory M. The effect of interleukin- 1 (IL-1) on androgen metabolism in human gingival tissue (HGT) and periodontal ligament (PDL). J Clin Periodontol 1996;23:419-424 https://doi.org/10.1111/j.1600-051X.1996.tb00568.x
  8. Lekic PC, Pender N, McCulloch CA, Is fibroblast heterogeneity relevant to the health, disease, and treatments of periodontal tissues? Crit Rev Oral Biol Med 1997;8:253-268 https://doi.org/10.1177/10454411970080030201
  9. Nishimura F, Terranova VP. Comparative study of the chemotatic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. J Dent Res 1996;75:986-992 https://doi.org/10.1177/00220345960750041401
  10. Oates TW, Mumford JH, Carnes DL, Cochran DL. Characterization of pro1iferation and cellular wound fill in periodontal cells using an in vitro wound model. J Periodontol 2001;72: 324-330 https://doi.org/10.1902/jop.2001.72.3.324
  11. Han X and Arnar S. Identification of genes differentially expressed in cultured human periodontal ligament fibroblasts vs, human gingival fibroblasts by DNA Microarray Analysis. J Dent Res 2002;81:399-405 https://doi.org/10.1177/154405910208100609
  12. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of repli-cative senescence. Current biology 1999;9: 939-945 https://doi.org/10.1016/S0960-9822(99)80420-5
  13. Dimri GP, Lee S, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995;92:9363-9367 https://doi.org/10.1073/pnas.92.20.9363
  14. Sawa Y, Phillips A, Hollard J, et al. The in vitro life-span of human periodontal ligament fibroblasts. Tissue & Cell 2000;32: 163-170 https://doi.org/10.1054/tice.2000.0100
  15. Nishimura F, Terranova VP, Braithwaite N, et al. Comparison of in vitro proliferative capacity of human periodontal ligament cells in juvenile and aged donors. Oral Diseases 1997;3:162-166 https://doi.org/10.1111/j.1601-0825.1997.tb00029.x
  16. West MD, Pereira-Smith OM, Smith JR. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 1989;184:138-147 https://doi.org/10.1016/0014-4827(89)90372-8
  17. Kwak IH, Kim HS, Choi OR, Ryu MS, Lim IK. Nuclear accumulation of globular actin as a cellular senescence marker. Cancer Res 2004;64:572-580 https://doi.org/10.1158/0008-5472.CAN-03-1856
  18. Kawabata M, Kawabata T, Nishibori M. Role of recA/RAD51 family proteins in mammals. Acta Med Okayama 2005;59:1-9
  19. Wang PL, Ohura K, Fujii T, et al. DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 2003;305:970-973 https://doi.org/10.1016/S0006-291X(03)00821-0
  20. Abiko Y, Shimizu N, Yamaguchi M, Suzuki H, Takiguchi H. Effect of aging on functional changes of periodontal tissue cells. Ann Periodontol 1998;3: 350-369 https://doi.org/10.1902/annals.1998.3.1.350
  21. Horiuchi K, Amizuka N, Takeshita S, et al Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by trnasforming growth factor beta. J Bone Miner Res 1999;14:1239-1249 https://doi.org/10.1359/jbmr.1999.14.7.1239
  22. Yashiro R, Nagasawa T, Kiji M, et al Transforming growth factor-beta stimulates interleukin-11 production by human periodontal ligament and gingival fibroblasts. J Clin Periodontol 2006;33:165-171 https://doi.org/10.1111/j.1600-051X.2006.00898.x
  23. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998;17:2596-2606 https://doi.org/10.1093/emboj/17.9.2596
  24. Sheth SS, Bodnar JS, Ghazalpour A, et al, Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 2006;
  25. White DM, Mikol DD, Espinosa R, et al Structure and chromosomal localization of the human gene for a brain form of prostaglandin D2 synthase. J BioI Chem 1992; 267:23202-23208
  26. Yamashima T, Sakuda K, Tohma Y, et al. Prostaglandin D synthase (beta-trace) in human arachnoid and meningioma cells: roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J Neurosci 1997;17:2376-2382 https://doi.org/10.1523/JNEUROSCI.17-07-02376.1997
  27. Kim BO, Cho IJ, Park JC, Kook JK, Kim HJ, Jang HS. Cellular study of replicative senescence in human periodontal ligament fibroblast using molecular biology. Kor Acad Periodontol 2005:35:623-634 https://doi.org/10.5051/jkape.2005.35.3.623
  28. Detweiler CS, Cunanan DB, Falkow S. Host microarray analysis reveals a role for the Samonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 2001;98:5850-5855
  29. Wan PL, Ohura K, Fujii T, et al, DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 2003;305:970-973 https://doi.org/10.1016/S0006-291X(03)00821-0
  30. Ishigami A, Handa S, Maruyama N, Supakar PL. Nuclear localization of senescence marker protein-30, SMP 30, in cultured mouse hepatocytes and its similarity to RNA polymerase. Biosci Biotechnol Biochem 2003;67:158-160 https://doi.org/10.1271/bbb.67.158
  31. Maruyama N, Ishigami A, Kuramoto M, et al. Senescence marker protein-30 knockout mouse as an aging model. Ann N Y Acad Sci 2004;1019:383-387 https://doi.org/10.1196/annals.1297.068
  32. Nakagawa Y, Yamaguchi M. Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: Change in apoptosis-related gene expression. J Cell Biochem 2005;96:1274-1285 https://doi.org/10.1002/jcb.20617
  33. Hannigam E, O'Connell DP, Hannigan A, Buckley LA. Soluble cell adhesion molecules in gingival crevicular fluid in periodontal health and disease. J Periodontol 2004;75: 546-550 https://doi.org/10.1902/jop.2004.75.4.546
  34. Sehorn MG, Sigurdsson S, Bussen W, Uager VM, Sung p. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 2004;429: 433-437 https://doi.org/10.1038/nature02563