DOI QR코드

DOI QR Code

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • 투고 : 2005.03.14
  • 심사 : 2006.03.07
  • 발행 : 2006.04.25

초록

For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

키워드

참고문헌

  1. Akaike, H. (1974), 'Stochastic theory of minimal realization', IEEE Tran. Auto. Contr., 19, 667-674 https://doi.org/10.1109/TAC.1974.1100707
  2. Bevington, P.R. (1969), Data Reduction and Error Analysis for the Physical Sciences, Mac-Graw Hill, New York
  3. Boonyapinyo, V., Miyata, T. and Yamada, H. (1999), 'Advanced aerodynamic analysis of suspension bridges by state space approach', J. Str. Eng., ASCE, 125(12), 1357-1366 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1357)
  4. Brownjohn, J.M.W. and Jakobsen, J.B. (2001), 'Strategies for aeroelastic parameter identification from bridge deck free vibration data', J. Wind Eng. Ind. Aerodyn., 89,1113-1136 https://doi.org/10.1016/S0167-6105(01)00091-5
  5. Bucher, C.G and Lin, YK. (1988), 'Stochastic stability of bridges considering coupled modes', J. Eng. Mech., ASCE, 114(12),2055-2071 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2055)
  6. Chen, X., Matsumoto, M. and Kareem, A. (2000a), 'Time domain flutter and buffeting response analysis of bridges', J. Eng. Mech., ASCE, 126(1), 7-16 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
  7. Chen, X., Matsumoto, M. and Kareem, A, (2000b), 'Aerodynamic coupling effects on the flutter and buffeting of bridges', J. Eng. Mech., ASCE, 126(1), 17-26 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(17)
  8. Chen, A, He, X. and Xiang, H. (2002), 'Identification of 18 flutter derivatives of bridge decks', J. Wind Eng. Ind. Aerodyn., 90, 2007-2022 https://doi.org/10.1016/S0167-6105(02)00317-3
  9. Chen, X. and Kareem, A. (2002), 'Advances in modeling of aerodynamic forces on bridge decks', J. Eng. Mech., ASCE, 128(11), 1193-1205 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1193)
  10. Chowdhury, A.G and Sarkar, P.P. (2003), 'A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom sectional model', Eng. Str., 25, 1763-1772 https://doi.org/10.1016/j.engstruct.2003.07.002
  11. Chowdhury, A.G and Sarkar, P.P. (2004), 'Identification of flutter derivatives of an airfoil and bridge deck', Wind and Str., 7(3), 187-02 https://doi.org/10.12989/was.2004.7.3.187
  12. Craig, R.R. Jr. (1981), Structural Dynamics, John Wiley, New York
  13. Gu, M., Zhang, R. and Xiang, H. (2000), 'Identification of flutter derivatives of bridge decks', J. Wind. Eng. Ind. Aerodyn., 84, 151-162 https://doi.org/10.1016/S0167-6105(99)00051-3
  14. Guyan, R.J. (1965), 'Reduction of stiffness and mass matrices', AIAA J., 3(2), 380 https://doi.org/10.2514/3.2874
  15. Ho, B.L. and Kalman, R.E. (1966), 'Effective construction of linear state-variable models from input/output data', Regelungstechnik, 14, 545-548
  16. Jakobsen, J. B. and Hijorth-Hansen, E. (1993), 'Determination of the aerodynamic derivative by system identification method', Wind Engineering: 1st AWE European and African Regional Conference, Cook. N. J. (ed.), 367-377, Thomas Telford
  17. Juang, J.N and Pappa, R.S. (1985), 'An eigensystem realization algorithm for modal parameter identification and model reduction', J. Guid. Contr. Dyn., 5, 620-627
  18. Juang, J.N. (1994), Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ
  19. Ljung, L. (1987), System Identification Theory for the User, 1st ed., Prentice Hall Inc. Englewood Cliffs, NJ, USA
  20. MATLAB (1997), Signal Processing Toolbox for Use with Matlab, User's Guide Version 4, The Mathworks Inc, Nattick, MA, USA [http://www.mathworks.com]
  21. Mishra, S.S. (2005), 'Effect of wind drag on flutter of long-span cable-stayed bridge decks', Ph. D. thesis, Indian Institute of Technology Roorkee, India
  22. Overschee, P.V. and Moor, B.D. (1993), 'Subspace algorithm for the stochastic identification problem', Automatica, 29(3), 649-660 https://doi.org/10.1016/0005-1098(93)90061-W
  23. Peeters, B. and Roeck, GD. (1999), 'Reference-based stochastic subspace identification for output-only modal analysis', Mech. Sys. Sig. Proc., 13(6), 855-78
  24. Peeters, B. (2000), 'System identification and damage detection in civil engineering', Ph. D. Thesis, KU Leuven, Belgium
  25. Press, W.H., Teukolsky, S.A and Vellerling, W.T. and Flannery, BP. (1992), Numerical Recipes in FORTRAN, 2nd ed., Cambridge Univ. Press
  26. Qin, X.R and Gu, M. (2004), 'Determination of flutter derivatives by stochastic subspace identification technique', Wind Struct., 7(3), 173-186 https://doi.org/10.12989/was.2004.7.3.173
  27. Roger, K.L. (1977), 'Airplane Math Modeling Methods for Active Control Design', Str. Aspects of Active Control, Agard -CP-228, 4-1-4-11
  28. Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), 'Identification of aeroelastic parameters of flexible bridges', J. Eng. Mech.; ASCE, 120(8), 1718-1742 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1718)
  29. Scanlan, R.H. and Tomoko, JJ. (1971), 'Airfoil and bridge deck flutter derivatives', J. Eng. Mech. Div., ASCE, 97(6), 1717-1733
  30. Scanlan, R.H. (1978), 'The action of flexible bridges under wind. I: flutter theory', J. Sound and Vib., 60(2), 187-199 https://doi.org/10.1016/S0022-460X(78)80028-5
  31. Simiu, E. and Scanlan, RH. (1996), Wind Effects on Structures, 3rd Ed., John Wiley & Sons, Inc. New York
  32. Singh, L., Jones, N.P., Scanlan, R.H. and Lorendeaux, O. (1995), 'Simultaneous identification of 3-D of aeroelastic parameters', Proceedings of gth Int. Conf on Wind Eng., New Delhi, India, 872-81
  33. Zhu, L.D., Xu, YL., Zhang, F. and Xiang, H.F. (2002), 'Tsing Ma bridge deck under skew winds. Part II: Flutter derivatives', J. Wind Eng. Ind. Aerodyn., 90, 807-837 https://doi.org/10.1016/S0167-6105(02)00159-9
  34. Zeiger, H.P. and McEwen, A.J. (1974), 'Approximate linear realization of given dimension via Ho's algorithm', IEEE Trans. Auto. Contr., AC-19(2), 153

피인용 문헌

  1. Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives vol.96, pp.1, 2008, https://doi.org/10.1016/j.jweia.2007.03.006
  2. Some new insights into the identification of bridge deck flutter derivatives vol.75, 2014, https://doi.org/10.1016/j.engstruct.2014.06.015
  3. Direct Approach to Extracting 18 Flutter Derivatives of Bridge Decks and Vulnerability Analysis on Identification Accuracy vol.28, pp.3, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000413
  4. Predicting flutter speed of a cable-stayed bridge vol.163, pp.1, 2010, https://doi.org/10.1680/bren.2010.163.1.013
  5. Data-driven stochastic subspace identification of flutter derivatives of bridge decks vol.98, pp.12, 2010, https://doi.org/10.1016/j.jweia.2010.07.003
  6. A modification to the flutter derivative model vol.129, 2014, https://doi.org/10.1016/j.jweia.2014.03.013
  7. A study of wind effect on damping and frequency of a long span cable-stayed bridge from rational function approximation of self-excited forces vol.10, pp.3, 2007, https://doi.org/10.12989/was.2007.10.3.215
  8. Higher-Order Self-Excited Drag Forces on Bridge Decks vol.142, pp.3, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001036
  9. Effect of rain on flutter derivatives of bridge decks vol.11, pp.3, 2008, https://doi.org/10.12989/was.2008.11.3.209
  10. Relevance of Eighteen Flutter Derivatives in Wind Response of a Long-Span Cable-Stayed Bridge vol.134, pp.5, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(769)
  11. Three-Degree-of-Freedom Coupled Numerical Technique for Extracting 18 Aerodynamic Derivatives of Bridge Decks vol.140, pp.11, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001009
  12. Continuous Modal Parameter Identification of a Cable-Stayed Bridge Based on Robustious Decomposition and Covariance-Driven Stochastic Subspace Identification vol.40, pp.1, 2016, https://doi.org/10.1007/s40996-016-0008-1
  13. Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique vol.14, pp.5, 2006, https://doi.org/10.12989/was.2011.14.5.413
  14. Dynamic Performance of a Slender Truss Bridge Subjected to Extreme Wind and Traffic Loads Considering 18 Flutter Derivatives vol.32, pp.6, 2006, https://doi.org/10.1061/(asce)as.1943-5525.0001068
  15. Improved Automatic Operational Modal Analysis Method and Application to Large-Scale Bridges vol.26, pp.8, 2021, https://doi.org/10.1061/(asce)be.1943-5592.0001756