References
- Akaike, H. (1974), 'Stochastic theory of minimal realization', IEEE Tran. Auto. Contr., 19, 667-674 https://doi.org/10.1109/TAC.1974.1100707
- Bevington, P.R. (1969), Data Reduction and Error Analysis for the Physical Sciences, Mac-Graw Hill, New York
- Boonyapinyo, V., Miyata, T. and Yamada, H. (1999), 'Advanced aerodynamic analysis of suspension bridges by state space approach', J. Str. Eng., ASCE, 125(12), 1357-1366 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1357)
- Brownjohn, J.M.W. and Jakobsen, J.B. (2001), 'Strategies for aeroelastic parameter identification from bridge deck free vibration data', J. Wind Eng. Ind. Aerodyn., 89,1113-1136 https://doi.org/10.1016/S0167-6105(01)00091-5
- Bucher, C.G and Lin, YK. (1988), 'Stochastic stability of bridges considering coupled modes', J. Eng. Mech., ASCE, 114(12),2055-2071 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2055)
- Chen, X., Matsumoto, M. and Kareem, A. (2000a), 'Time domain flutter and buffeting response analysis of bridges', J. Eng. Mech., ASCE, 126(1), 7-16 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
- Chen, X., Matsumoto, M. and Kareem, A, (2000b), 'Aerodynamic coupling effects on the flutter and buffeting of bridges', J. Eng. Mech., ASCE, 126(1), 17-26 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(17)
- Chen, A, He, X. and Xiang, H. (2002), 'Identification of 18 flutter derivatives of bridge decks', J. Wind Eng. Ind. Aerodyn., 90, 2007-2022 https://doi.org/10.1016/S0167-6105(02)00317-3
- Chen, X. and Kareem, A. (2002), 'Advances in modeling of aerodynamic forces on bridge decks', J. Eng. Mech., ASCE, 128(11), 1193-1205 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1193)
- Chowdhury, A.G and Sarkar, P.P. (2003), 'A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom sectional model', Eng. Str., 25, 1763-1772 https://doi.org/10.1016/j.engstruct.2003.07.002
- Chowdhury, A.G and Sarkar, P.P. (2004), 'Identification of flutter derivatives of an airfoil and bridge deck', Wind and Str., 7(3), 187-02 https://doi.org/10.12989/was.2004.7.3.187
- Craig, R.R. Jr. (1981), Structural Dynamics, John Wiley, New York
- Gu, M., Zhang, R. and Xiang, H. (2000), 'Identification of flutter derivatives of bridge decks', J. Wind. Eng. Ind. Aerodyn., 84, 151-162 https://doi.org/10.1016/S0167-6105(99)00051-3
- Guyan, R.J. (1965), 'Reduction of stiffness and mass matrices', AIAA J., 3(2), 380 https://doi.org/10.2514/3.2874
- Ho, B.L. and Kalman, R.E. (1966), 'Effective construction of linear state-variable models from input/output data', Regelungstechnik, 14, 545-548
- Jakobsen, J. B. and Hijorth-Hansen, E. (1993), 'Determination of the aerodynamic derivative by system identification method', Wind Engineering: 1st AWE European and African Regional Conference, Cook. N. J. (ed.), 367-377, Thomas Telford
- Juang, J.N and Pappa, R.S. (1985), 'An eigensystem realization algorithm for modal parameter identification and model reduction', J. Guid. Contr. Dyn., 5, 620-627
- Juang, J.N. (1994), Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ
- Ljung, L. (1987), System Identification Theory for the User, 1st ed., Prentice Hall Inc. Englewood Cliffs, NJ, USA
- MATLAB (1997), Signal Processing Toolbox for Use with Matlab, User's Guide Version 4, The Mathworks Inc, Nattick, MA, USA [http://www.mathworks.com]
- Mishra, S.S. (2005), 'Effect of wind drag on flutter of long-span cable-stayed bridge decks', Ph. D. thesis, Indian Institute of Technology Roorkee, India
- Overschee, P.V. and Moor, B.D. (1993), 'Subspace algorithm for the stochastic identification problem', Automatica, 29(3), 649-660 https://doi.org/10.1016/0005-1098(93)90061-W
- Peeters, B. and Roeck, GD. (1999), 'Reference-based stochastic subspace identification for output-only modal analysis', Mech. Sys. Sig. Proc., 13(6), 855-78
- Peeters, B. (2000), 'System identification and damage detection in civil engineering', Ph. D. Thesis, KU Leuven, Belgium
- Press, W.H., Teukolsky, S.A and Vellerling, W.T. and Flannery, BP. (1992), Numerical Recipes in FORTRAN, 2nd ed., Cambridge Univ. Press
- Qin, X.R and Gu, M. (2004), 'Determination of flutter derivatives by stochastic subspace identification technique', Wind Struct., 7(3), 173-186 https://doi.org/10.12989/was.2004.7.3.173
- Roger, K.L. (1977), 'Airplane Math Modeling Methods for Active Control Design', Str. Aspects of Active Control, Agard -CP-228, 4-1-4-11
- Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), 'Identification of aeroelastic parameters of flexible bridges', J. Eng. Mech.; ASCE, 120(8), 1718-1742 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1718)
- Scanlan, R.H. and Tomoko, JJ. (1971), 'Airfoil and bridge deck flutter derivatives', J. Eng. Mech. Div., ASCE, 97(6), 1717-1733
- Scanlan, R.H. (1978), 'The action of flexible bridges under wind. I: flutter theory', J. Sound and Vib., 60(2), 187-199 https://doi.org/10.1016/S0022-460X(78)80028-5
- Simiu, E. and Scanlan, RH. (1996), Wind Effects on Structures, 3rd Ed., John Wiley & Sons, Inc. New York
- Singh, L., Jones, N.P., Scanlan, R.H. and Lorendeaux, O. (1995), 'Simultaneous identification of 3-D of aeroelastic parameters', Proceedings of gth Int. Conf on Wind Eng., New Delhi, India, 872-81
- Zhu, L.D., Xu, YL., Zhang, F. and Xiang, H.F. (2002), 'Tsing Ma bridge deck under skew winds. Part II: Flutter derivatives', J. Wind Eng. Ind. Aerodyn., 90, 807-837 https://doi.org/10.1016/S0167-6105(02)00159-9
- Zeiger, H.P. and McEwen, A.J. (1974), 'Approximate linear realization of given dimension via Ho's algorithm', IEEE Trans. Auto. Contr., AC-19(2), 153
Cited by
- Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives vol.96, pp.1, 2008, https://doi.org/10.1016/j.jweia.2007.03.006
- Some new insights into the identification of bridge deck flutter derivatives vol.75, 2014, https://doi.org/10.1016/j.engstruct.2014.06.015
- Direct Approach to Extracting 18 Flutter Derivatives of Bridge Decks and Vulnerability Analysis on Identification Accuracy vol.28, pp.3, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000413
- Predicting flutter speed of a cable-stayed bridge vol.163, pp.1, 2010, https://doi.org/10.1680/bren.2010.163.1.013
- Data-driven stochastic subspace identification of flutter derivatives of bridge decks vol.98, pp.12, 2010, https://doi.org/10.1016/j.jweia.2010.07.003
- A modification to the flutter derivative model vol.129, 2014, https://doi.org/10.1016/j.jweia.2014.03.013
- A study of wind effect on damping and frequency of a long span cable-stayed bridge from rational function approximation of self-excited forces vol.10, pp.3, 2007, https://doi.org/10.12989/was.2007.10.3.215
- Higher-Order Self-Excited Drag Forces on Bridge Decks vol.142, pp.3, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001036
- Effect of rain on flutter derivatives of bridge decks vol.11, pp.3, 2008, https://doi.org/10.12989/was.2008.11.3.209
- Relevance of Eighteen Flutter Derivatives in Wind Response of a Long-Span Cable-Stayed Bridge vol.134, pp.5, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(769)
- Three-Degree-of-Freedom Coupled Numerical Technique for Extracting 18 Aerodynamic Derivatives of Bridge Decks vol.140, pp.11, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001009
- Continuous Modal Parameter Identification of a Cable-Stayed Bridge Based on Robustious Decomposition and Covariance-Driven Stochastic Subspace Identification vol.40, pp.1, 2016, https://doi.org/10.1007/s40996-016-0008-1
- Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique vol.14, pp.5, 2006, https://doi.org/10.12989/was.2011.14.5.413
- Dynamic Performance of a Slender Truss Bridge Subjected to Extreme Wind and Traffic Loads Considering 18 Flutter Derivatives vol.32, pp.6, 2006, https://doi.org/10.1061/(asce)as.1943-5525.0001068
- Improved Automatic Operational Modal Analysis Method and Application to Large-Scale Bridges vol.26, pp.8, 2021, https://doi.org/10.1061/(asce)be.1943-5592.0001756