DOI QR코드

DOI QR Code

Mode localization and frequency loci veering in a disordered coupled beam system

  • Lu, Z.R. (School of Engineering, Sun Yat-sen University) ;
  • Liu, J.K. (School of Engineering, Sun Yat-sen University) ;
  • Huang, M. (School of Engineering, Sun Yat-sen University)
  • 투고 : 2006.03.06
  • 심사 : 2006.06.19
  • 발행 : 2006.11.10

초록

Vibration mode localization and frequency loci veering in disordered coupled beam system are studied in this paper using finite element analysis. Two beams coupled with transverse and rotational springs are examined. Small disorders in the physical parameters such as Young's modulus, mass density or span length of the substructure are introduced in the investigation of the mode localization and frequency loci veering phenomena. The effect of disorder in the elastic support on the mode localization phenomenon is also discussed. It is found that an asymmetric disorder in the weakly coupled system will lead to the occurrence of mode localization and frequency loci phenomena.

키워드

참고문헌

  1. Anderson, P.w. (1958), 'Absence of diffusion in certain random lattices', Phys. Rev., 109,1492-1505 https://doi.org/10.1103/PhysRev.109.1492
  2. Bendiksen, O.O. (2000), 'Localization phenomenon in structural dynamics', Chaos, Solitons and Fractals, 11, 1621-1660 https://doi.org/10.1016/S0960-0779(00)00013-8
  3. Cai, C.W., Cheung, Y.K. and Chan, H.C. (1995), 'Mode localization phenomena in nearly periodic systems', J Appl. Mech., Trans. ASME, 62(1), 141-149 https://doi.org/10.1115/1.2895895
  4. Chan, H.C. and Liu, J.K. (2000), 'Mode localization and frequency loci veering in disordered engineering structures', Chaos, Solitons and Fractals, 11, 1493-1504 https://doi.org/10.1016/S0960-0779(99)00073-9
  5. Chao, C.P. and Shaw, S.W. (1997), 'Nonlinear localization in systems of tautochronic vibration absorbers', Proc. 1997 ASME Design Engineering Technical Conf, paper DETC97NIB-3956
  6. Chen, P.T. and Ginsberg, J.H. (1992), 'On the relationship between veering of eigenvalue loci and parameter sensitivity of eigenfunctions', J Vib. Acoustics, Trans. ASME, 114, 141-148 https://doi.org/10.1115/1.2930242
  7. Hodges, C.H. (1982), 'Confinement of vibration by structural irregularity', J Sound Vib., 82, 411-424 https://doi.org/10.1016/S0022-460X(82)80022-9
  8. Huang, B.w. and Kuang, K.H. (2001), 'Mode localization in a rotating mistuned turbo disk with Coriolis effect', Int. J Mech. Sci., 43, 1643-1660 https://doi.org/10.1016/S0020-7403(00)00096-5
  9. Huang, B.w. and Kung, H.K. (2005), 'Mode localization of a component cooling water heat exchanger', Int. J Mech. Sci., 47,170-186 https://doi.org/10.1016/j.ijmecsci.2005.01.004
  10. Jacques, N. and Potier-Ferry, M. (2005), 'On mode localization in tensile plate buckling', Comptes Rendus Mecanique, 333,804-809 https://doi.org/10.1016/j.crme.2005.10.013
  11. Jiang, X.A. and Vakakis, A.F. (2003), 'Dual mode vibration isolation based on non-linear mode localization', Int. J Non-linear Mech., 37, 837-850
  12. Kang, B. and Tan, c.A. (1999), 'Transverse mode localization in a dual-span rotating shaft', J Sound Vib., 219(1), 133-155 https://doi.org/10.1006/jsvi.1998.1923
  13. Kim, D.O. and Lee, LW. (2000), 'Mode localization in structures consisting of substructures and couplers', Eng. Struct., 22, 39-48 https://doi.org/10.1016/S0141-0296(98)00057-1
  14. King, M. and Vakakis, A.F. (1995a), 'Mode localization in a system of coupled flexible beams with geometric nonlinearities', Zeitschriji fur Angewandte Mathematik und Mechanik - ZAMM (Journal of Applied Mathematics and Mechanics), 75(2), 127-139 https://doi.org/10.1002/zamm.19950750209
  15. King, M. and Vakakis, A.F. (1995b), 'A very complicated structure of resonances in a nonlinear system with cyclic symmetry: Nonlinear forced localization', Nonlinear Dynamics, 7, 85-104
  16. King, M.E. and Layne, P.A. (1998), 'Dynamics of nonlinear cyclic systems with structural irregularity', Nonlinear Dynamics, 15, 225-244 https://doi.org/10.1023/A:1008291628528
  17. Kuttler, J.R. and Sigillito, V.G. (1981), 'On curve veering', J Sound Vib., 75, 585-588 https://doi.org/10.1016/0022-460X(81)90448-X
  18. Lacarbonara, W., Arafat, H.N. and Nayfeh, A.H. (2005), 'Non-linear interactions in imperfect beams at veering', Int. J Non-linear Mech., 40, 987-1003 https://doi.org/10.1016/j.ijnonlinmec.2004.10.006
  19. Liu, J.K., Zhao, L.e. and Fang, T. (1995), 'A geometric theory in investigation on mode localization and frequency loci veering phenomena', Acta Mech Solida Sinica, 8(4),349-355
  20. Pierre, C. (1988), 'Mode localization and eigenvalue loci veering phenomena in disordered structures', J Sound Vib., 126(3), 485-502 https://doi.org/10.1016/0022-460X(88)90226-X
  21. Pierre, C. and Dowell, E.H. (1987), 'Localization of vibrations by structural irregularity', J Sound Vib., 114, 549-554 https://doi.org/10.1016/S0022-460X(87)80023-8
  22. Pierre, C., Tang, D.M. and Dowell, E.H. (1987), 'Localized vibrations of disordered multispan beams: Theory and experiment', AlAA J, 25,1249-1257
  23. Vakakis, A.F. and Cetinkaya, C. (1993), 'Mode localization in a class of multi-degree-of-freedom nonlinear systems with cyclic symmetry', SIAM Journal on Applied Mathematics, 53, 265-282 https://doi.org/10.1137/0153016
  24. Vakakis, A.F., Nayfeh, T. and King, M. (1993), 'A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system', J Appl. Mech., 60(2), 388-397 https://doi.org/10.1115/1.2900806
  25. Xie, W.C. and Chen, R.Z.H. (2002), 'Vibration mode localization in rib-stiffened plates with misplaced stiffeners in one direction', Chaos, Solitons and Fractals, 14, 311-333 https://doi.org/10.1016/S0960-0779(01)00235-1
  26. Yang, YR. (1997), 'Effects of geometrical asymmetries of structure on dynamical characteristics of two coupled control surfaces', J Sound Vib., 199(2), 299-308 https://doi.org/10.1006/jsvi.1996.0615

피인용 문헌

  1. Vibration Analysis of a Coupled Beam System Carrying Any Number of Sprung Masses vol.15, pp.2, 2012, https://doi.org/10.1260/1369-4332.15.2.217
  2. Analyze on a Coupled Beam Vibration System by FEM (II): Case Study vol.933, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.933.285
  3. On mode localization of a weakly coupled beam system with spring-mass attachments vol.42, pp.1, 2006, https://doi.org/10.12989/sem.2012.42.1.013