DOI QR코드

DOI QR Code

Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges

  • Wu, Qingxiong (College of Civil Engineering and Architecture, Fuzhou University) ;
  • Takahashi, Kazuo (Department of Civil Engineering, Faculty of Engineering, Nagasaki University) ;
  • Chen, Baochun (College of Civil Engineering and Architecture, Fuzhou University)
  • Received : 2004.08.31
  • Accepted : 2006.04.17
  • Published : 2006.08.20

Abstract

This paper uses the finite element method to simultaneously consider the coupled cable-deck vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The stay cables are represented by some cable finite elements, which can consider the parametric vibration of the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh damping considering element damping for damping matrix are also proposed for dynamic analyses of cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively.

Keywords

References

  1. Abdel-Ghaffar, A.M. and Khalifa, M.A. (1991), 'Importance of cable vibration in dynamics of cable-stayed bridges', J. Eng. Mech., ASCE, 117, 2571-2589 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2571)
  2. Ali, H.M. and Abdel-Ghaffar, A.M. (1995), 'Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings', Comput. Struct., 54(3), 461-492 https://doi.org/10.1016/0045-7949(94)00353-5
  3. ARK Information Systems Inc. (2003). TDAP III, Japan (in Japanese)
  4. Au, F.T.K., Cheng, Y.S., Cheung, Y.K. and Zheng, D.Y. (2001), 'On the determination of natural frequencies and mode shapes of cable-stayed bridges', Appl. Mathematical Modelling, 25, 1099-1115 https://doi.org/10.1016/S0307-904X(01)00035-X
  5. Bathe, K.J. (1996), Finite Element Procedures, Englewood Cliffs, New Jersey: Prentice-Hall
  6. Bhatt, P. (2002), Programming the Dynamic Analysis of Structures, London, Spon Press
  7. Broughton, P. and Ndumbaro, P. (1994), The Analysis of Cable and Catenary Structures, London, Thomas Telford
  8. Caetano, E., Cunha, A. and Taylor, C. (2000), 'Investigation of dynamic cable-deck interaction in a physical model ofa cable-stayed bridge: Part I: Modal analysis', Earthq. Eng. Struct. Dyn., 29, 481-498 https://doi.org/10.1002/(SICI)1096-9845(200004)29:4<481::AID-EQE918>3.0.CO;2-1
  9. Caetano, E., Cunha, A. and Taylor, C. (2000), 'Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge: Part II: Seismic response', Earthq. Eng. Struct. Dyn., 29, 499-521 https://doi.org/10.1002/(SICI)1096-9845(200004)29:4<499::AID-EQE919>3.0.CO;2-A
  10. Caughey, T.K. (1960), 'Classical normal modes in damped linear dynamic systems', J. Appl. Mech., ASME, 27, 269-271 https://doi.org/10.1115/1.3643949
  11. Clough, R.W. and Penzien, J. (1975), Dynamics of Structure, McGraw-Hill Kogakusha, Ltd
  12. Cuthill, E. and McKee, J. (1969), 'Reducing the bandwidth of sparse symmetric matrices', Proc. of ACM National Conf., New York, 157-172
  13. Ernst, H.J. (1965), 'Der E-modul von Seilen unter Ber. ucksichtigung des Durchhanges', Der Bauingenieur, 40(2), 52-55 (in German)
  14. Fujino, Y., Warnitchai, P. and Pacheco, B.M. (1993), 'An experimental and analytical study of autoparametric resonance in a 3 DOF model of cable-stayed-beam', Nonlinear Dynamics, 4, 111-138
  15. Fujino, Y. and Kimura, K. (1997), 'Cables and cable vibration in cable-supported bridges', Proc. of Int. Seminar on Cable Dynamics, Technical Committee on Cable Structures and Wind, Japan Association for Wind Engineering, 1-11
  16. Gimsing, N.J. (1983), Cable Supported Bridges, John Wiley and Sons Ltd
  17. Guyan, R.J. (1965), 'Reduction of stiffness and mass matrices', AIAA J., 3(2), 380 https://doi.org/10.2514/3.2874
  18. Hayashi, M., Iwasaki, E., Yamano, N. and Toki, J. (2001), 'Finite displacement analysis of cable structures by hierarchical elements', J. Struct. Mech. Earthq. Eng., JSCE, 668/I-54, 207-216 (in Japanese)
  19. Irons, B.M. (1965), 'Structural eigenvalue problem: Elimination of unwanted variables', AIAA J., 3(2), 961-962
  20. Irvine, H.M. (1981), Cable Structures, The Massachusetts Institute of Technology Press, Cambridge, MA
  21. Japan Road Association (2002), Specifications for Highway Bridges, Part V Seismic Design, Japan
  22. Karoumi, R. (1999), 'Some modeling aspects in the nonlinear finite element analysis of cable supported bridges', Comput. Struct., 71(4), 397-412 https://doi.org/10.1016/S0045-7949(98)00244-2
  23. Kovacs, I. (1982), 'Zur Frage der Seilschwingungen und der Seildampfung', Die Bautechnik, 59(10), 325-332 (in German)
  24. Langsoe, H.E. and Larsen, O.D. (1987), 'Generating mechanics for cable stay oscillations at the Faro Bridge', Proc. of Int. Conf. on Cable-Stayed Bridges, Bangkok, Thailand, 1023-1033
  25. Lee, C.L. and Perkins, N.C. (1993), 'Experimental investigation of isolated and simultaneous internal resonances in suspended cables', Proc. of 14th ASME Biennial Conf. on Mechanical Vibration and Noise, Nonlinear Vibrations, Albuquerque, NM, DE-Vol.54, 21-31
  26. Leonard, J.W. (1988), Tension Structures, New York: McGraw-Hill
  27. Lilien, J.L. and Pinto Da Costa, A. (1994), 'Vibration amplitudes caused by parametric excitation on cable stayed structures', J. Sound Vib., 174, 69-90 https://doi.org/10.1006/jsvi.1994.1261
  28. Lin, T.W. (1989), 'Multiple roots reverse Cuthill-McKee method for reducing the bandwidth and profile of finite element systems', J. of the Chinese Institute of Engineers, 12(2), 155-164 https://doi.org/10.1080/02533839.1989.9677145
  29. Manabe, Y., Sasaki, N. and Yamaguti, K. (1999), 'Field vibration test of the Tatara Bridge', Bridge and Foundation Engineering, 33, 27-30 (in Japanese)
  30. Okauchi, I., Miyata, T., Tatsumi, M. and Sadaki, N. (1992), 'Field vibration test of a long-span cable-stayed bridge by large exciters', J, Struct. Mech. Earthq. Eng, JSCE, 455, 75-84 (in Japanese)
  31. Paz, M. (1990), Structural Dynamics: Theory and Computation, Kluwer Academic
  32. Pinto Da Costa, A. and Martins, J.A.C. (1995), 'The nonlinear oscillations of inclined cables excited by periodic motions of their supports', Proc. of Int. Symposium on Cable Dynamics, Liege, Belgium, 205-212
  33. Pinto da Costa, A., Martins, J.A.C., Branco, F. and Lilien, J.L. (1996), 'Oscillations of bridge stay cables induced by periodic motions of deck and/or towers', J. Eng. Mech., ASCE, 122, 613-622 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(613)
  34. Ross, C.T.F. (1991), Finite Element Programs for Structural Vibrations, London, Springer
  35. Royer-Carfagni, G.F. (2003), 'Parametric-resonance-induced cable vibrations in network cable-stayed bridges: A continuum approach', J. Sound Vib., 262(5), 1191-1222 https://doi.org/10.1016/S0022-460X(02)01149-5
  36. Smith, S.W. and Baker, J.R. (2001), 'Toward simulating parametric response of bridge stay cables resulting from motion of the deck and tower', Fourth Int. Symposium on Cable Dynamics, Montreal, Canada, 361-368
  37. Takahashi, K. (1991), 'Dynamic stability of cables subjected to an axial periodic load', J. Sound Vib., 144, 323-330 https://doi.org/10.1016/0022-460X(91)90752-6
  38. Tuladhar, R., Dilger, W.H. and Elbadry, M.M. (1995), 'Influence of cable vibration on seismic response of cable-stayed bridges', Canadian J. Civil Eng., 22, 1001-1020 https://doi.org/10.1139/l95-116
  39. Warnitchai, P., Fujino, Y. and Susumpow, T. (1995), 'A non-linear dynamic model for cables and its application to cable-structure system', J. Sound Vib., 187(4), 695-712 https://doi.org/10.1006/jsvi.1995.0553
  40. Wu, Q., Takahashi, K., Okabayashi, T. and Nakamura, S. (2003), 'Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge', J. Sound Vib., 261(3), 403-420 https://doi.org/10.1016/S0022-460X(02)01088-X
  41. Wu, Q., Takahashi, K. and Nakamura, S. (2003), 'Nonlinear vibrations of cables considering loosening', J. Sound Vib., 261(3), 385-402 https://doi.org/10.1016/S0022-460X(02)01090-8
  42. Wu, Q., Takahashi, K. and Nakamura, S. (2004), 'Non-linear response of cables subjected to periodic support excitation considering cable loosening', J. Sound Vib., 271(1-2), 453-463 https://doi.org/10.1016/S0022-460X(03)00513-3
  43. Yamaguchi, H. (1997), 'Fundamentals of cable dynamics', Proc. of Int. Seminar on Cable Dynamics, Technical Committee on Cable Structures and Wind, Japan Association for Wind Engineer, Tokyo, 81-94
  44. Yoshimura, T., Inoye, A., Kaji, K. and Savage, M. (1989), 'A study on the aerodynamic stability of the Aratsu Bridge', Proc. of Canada-Japan Workshop on Bridge Aerodynamics, National Research Council of Canada, Ottawa, Canada, 141-50

Cited by

  1. Verification of a Cable Element for Cable Parametric Vibration of One-Cable-Beam System Subject to Harmonic Excitation and Random Excitation vol.14, pp.3, 2011, https://doi.org/10.1260/1369-4332.14.3.589
  2. Parametric vibration of carbon fiber reinforced plastic cables with damping effects in long-span cable-stayed bridges vol.17, pp.14, 2011, https://doi.org/10.1177/1077546310395965
  3. Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.037
  4. Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts vol.30, pp.5, 2008, https://doi.org/10.12989/sem.2008.30.5.513
  5. Nonlinear dynamic analysis of long-span cable-stayed bridges with train-bridge and cable coupling vol.11, pp.2, 2006, https://doi.org/10.1007/s40091-019-0229-1