References
- Alefeld, G. and Claudio, D. (1998), 'The basic properties of interval arithmetic, its software realizations and some applications', Comput. Struct., 67(1-3), 3-8 https://doi.org/10.1016/S0045-7949(97)00150-8
- Cherki, A., Plessis, G., Lallemand, B., Tison, T. and Level, P. (2000), 'Fuzzy behavior of mechanical systems with uncertain boundary conditions', Comput. Meth. Appl. Mech. Eng., 189(3), 863-873 https://doi.org/10.1016/S0045-7825(99)00401-6
- Dubois, D. and Prade, H. (1980), Fuzzy Sets and System: Theory and Applications, Academic Press, New York
- Gao, W., Chen, J.J., Ma, J. and Liang, Z.T. (2004), 'Dynamic response analysis of stochastic frame structures under nonstationary random excitation', AIAA J., 42(9), 1818-1822 https://doi.org/10.2514/1.7523
- Jensen, H. and Iwan, W.D. (1992), 'Response of system with uncertain parameters to stochastic excitation', J. Eng. Mech., ASCE, 118(5), 1012-1025 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1012)
- Li, J. and Liao, S. (2002), 'Dynamic response of linear stochastic structures under random excitation', Acta Mechanica Sinica, 34(3), 416-424
- Lin, J. and Yi, P. (2001), 'Stationary random response of structures with stochastic parameters', Chinese J. Comput. Mech., 18(4), 402-408
- Luo, C.Z. (1989), The Introduction to the Fuzzy Set (the first part), Beijing Normal University Press, Bei Jing
- Rao, S.S. and Cao, L. (2001), 'Fuzzy boundary element method for the analysis of imprecisely defined-system', AIAA J., 39(9), 1788-1797 https://doi.org/10.2514/2.1510
- Simoes, L.M.C. (2001), 'Fuzzy optimization of structures by the two-phase method', Comput. Struct., 79(26-28), 2481-2490 https://doi.org/10.1016/S0045-7949(01)00086-4
- Valliappan, S. and Pham, T.D. (1993), 'Fuzzy finite element analysis on an elastic soil medium', Int. J. Numerical and Analytical Methods in Geomechanics, 17(11), 771-789 https://doi.org/10.1002/nag.1610171103
- Zadeh, L.A. (1978), 'Fuzzy sets', Information and Control, 8(1), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
- Zhao, L. and Chen, Q. (2000), 'Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation', Comput. Struct., 77(6), 651-657 https://doi.org/10.1016/S0045-7949(00)00019-5
Cited by
- Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.297
- Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations vol.2013, 2013, https://doi.org/10.1155/2013/802546