Ultrafine Grained Steels Processed by Equal Channel Angular Pressing

  • Published : 2006.02.01

Abstract

Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability.

Keywords

References

  1. K. Tsuzaki, lSIJ Int. 42, 1325 (2002)
  2. F. B. Pickering, in: Physical Metallurgy and the Design of Steels, Appl. Sci. Pub, London, UK, 1978, p.37
  3. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000) https://doi.org/10.1016/S0079-6425(99)00007-9
  4. V. M. Segal, Mater. Sci. Eng. A197, 157 (1995)
  5. D. H. Shin, B. C. Kim, Y. S. Kim, and K. -T. Park, Acta Mater. 48, 2247 (2000) https://doi.org/10.1016/S1359-6454(00)00028-8
  6. Y. Fukuda, K. Oh-ishi, Z.. Horita , and T. G. Langdon, Acta Mater. 50, 553 (2002) https://doi.org/10.1016/S1359-6454(01)00368-8
  7. D. H. Shin, I. Kim, J. Kim, and K. -T. Park, Acta Mater. 49, 1285 (2001) https://doi.org/10.1016/S1359-6454(01)00010-6
  8. W. J. Nam and C. M. Bae, Mater. Sci. Eng. A203, 278 (1995)
  9. J. Gil Sevillano, Mater. Sci. Eng. 21, 221 (1995)
  10. K. -T. Park, Y. S. Kim, and D. H. Shin, Metall. Mater. Trans. A. 32A, 2373 (2001)
  11. K. -T. Park and D. H. Shin, Mater. Sci. Eng. A334, 79 (2002)
  12. D. H. Shin, K. -T. Park, and Y. S. Kim, Scripta Mater. 48, 469 (2003) https://doi.org/10.1016/S1359-6462(02)00512-2
  13. K. -T. Park, S. Y. Han, B. D. Ahn, D. H. Shin, Y. K. Lee, and K. K. Um, Scripta Mater. 51, 909 (2004) https://doi.org/10.1016/j.scriptamat.2004.06.017
  14. H. Conrad, Mater. Sci. Eng. A341, 216 (2003)
  15. Y. M. Wang and E. Ma, Acta Mater. 52, 1699 (2004) https://doi.org/10.1016/j.actamat.2003.12.022
  16. C. C. Koch, Scripta Mater. 49, 657 (2003) https://doi.org/10.1016/S1359-6462(03)00394-4
  17. J. Aldazabal and J. Gil Sevillano, Mater. Sci. Eng. A365, 186 (2004)
  18. K. -T. Park, Y. S. Kim, J. G. Lee, and D. H. Shin, Mater. Sci. Eng. A293, 165 (2000)
  19. K. -T. Park and D. H. Shin, Metall. Mater. Trans. A. 33A, 705 (2002)
  20. K. -T. Park, S. Y. Han, D. H. Shin, Y. K. Lee, K. J. Lee, and K. S. Lee, ISIJ Int. 44, 1057 (2004) https://doi.org/10.2355/isijinternational.44.1057
  21. A. Needleman and J. Gil Sevillano, Scripta Mater. 48, 109 (2003) https://doi.org/10.1016/S1359-6462(02)00336-6
  22. D. K. Matlock, F. Zia-Ebrahimi, G. Krauss, in: Deformation, Processing and Structure, ASM, Metals Park, USA, 1982, p.47