함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성

Characterizations of Pt-SPE Electrocatalysts Prepared by an Impregnation-Reduction Method for Water Electrolysis

  • 장두영 (명지대학교 화학공학과) ;
  • 장인영 (명지대학교 화학공학과) ;
  • 권오환 (명지대학교 화학공학과) ;
  • 김경언 (명지대학교 화학공학과) ;
  • 황갑진 (한국에너지기술연구원 수소에너지 연구센터) ;
  • 강안수 (명지대학교 화학공학과)
  • Jang, Doo-Young (Department of Chemical Engineering, Myongji University) ;
  • Jang, In-Young (Department of Chemical Engineering, Myongji University) ;
  • Kweon, Oh-Hwan (Department of Chemical Engineering, Myongji University) ;
  • Kim, Kyoung-Eon (Department of Chemical Engineering, Myongji University) ;
  • Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, An-Soo (Department of Chemical Engineering, Myongji University)
  • 발행 : 2006.12.15

초록

Solid polymer electrolyte(SPE) membrane with electrodes embedded on both faces offer unique possibilities for the electrochemical cells like water electrolyzer with fuel cell. The Nafion 117 membrane was used as the SPE, and $Pt(NH_3)_4Cl_2$ and $NaBH_4$ as the electrocatalysts and reducing agent, respectively. The 'impregnation-reduction(I-R) method' has been investigated as a tool for the preparation of electrocatalysts for water electrolyzer by varying the concentration of reducing agent and reduction time at fixed concentration of platinum salt, 5 mmol/L. Pt-SPE electrocatalysts prepared by non-equilibrium I-R method showed the lowest cell voltage of 2.17 V at reduction time, 90 min and with concentration of reducing agent 0.8 mol/L and the cell voltage with those by equilibrium I-R method was 2.42 V at reduction time, 60 min and with concentration of reducing agent 0.8 mol/L. The cell voltage were obtained at a current density $1\;A/cm^2$ and $80^{\circ}C$. In water electrolysis, hydrogen production efficiency by Pt-SPE electrocatalyst is 68.2% in case of non-equilibrium I-R method and 61.2% at equilibrium I-R method.

키워드

참고문헌

  1. W. Vielstich, A. Lamm and H. A. Gasteriger, 'Handbook of Fuel Cells; Fundamentals Tehnology and Applications', Vol. 2, John Wiley & Sons, Ltd: West Sussex, 2003
  2. A. B. Goldberg, L. I. Kheifets, A. G. Vaganov, S. G. Ogryz'ko-Zhukovxkay and A. V. Shabalin, 'A hydrodynamic model for water decomposition in electrolyzers with a solid polymer electrolyte', J. Appl. Electrochem, Vol. 22, No. 12, 1992, pp. 1147-1154 https://doi.org/10.1007/BF01297416
  3. S. P. Jean and A. A. Wragg, 'Behaviour of electrogenerated hydrogen and oxygen bubbles in narrow gap cells; Part I. Experimental', Electrochemica Acta., Vol. 38, No. 10, 1993, pp. 1381-1390 https://doi.org/10.1016/0013-4686(93)80074-A
  4. P. Millet, T. Alleau and R. Durand, 'Characterization of membrane electrode assemblies for solid polymer electrolyte water electrolysis', J. Applied Electrochem., Vol. 23, 1993, pp. 322-331 https://doi.org/10.1007/BF00296687
  5. K. A. Akiko, N. Hiroshi, F. Keikichi and K. Hideaki, 'Metal electrodes bonded on solid polymer electrolyte membranes (SPE); The behaviour of platinum bonded on SPE for hydrogen and oxygen electrode processes', Electrochemica Acta., Vol. 28, No. 6, 1993, pp. 777-780 https://doi.org/10.1016/0013-4686(83)85146-9
  6. B. Sorensen, 'Hydrogen and Fuel Cells, Emerging Technologies and Applications', Elsevier Academic Press, California, 2005
  7. J. Larminie, and A. Dicks, 'Fuel cell system explained', John Wiley & Sons, Ltd, New York, 2000
  8. P. Millet and M. Pineri, 'New solid polymer electrolyte composites for water electrolysis', J. Appl. Electrochem., Vol. 19, 1989, pp. 162-166 https://doi.org/10.1007/BF01062295
  9. H. Takenaka, E. Torikai, Y. Kawami and N. Wakabayashi, 'Solid Polymer Electrolyte Water Electrolysis', Int. J. Hydrogen Energy, Vol. 7, No. 5. 1982, pp. 397-403 https://doi.org/10.1016/0360-3199(82)90050-7
  10. T. Sakai, Y. Kawarni, H. Takenaka and E. Torikai, 'Effects of Surface Roughening of Nafion on Electrode Plating, Mechanical Strength, and Cell Performances for SPE Water Electrolysis', J. Electrochem. Soc., Vol. 137, No. 12, 1990, pp. 3777-3783 https://doi.org/10.1149/1.2086300
  11. N. Rajalakshmi, H. Ryu and K. S. Dhathathreyan, 'Platinum catalysed membranes for proton exchange membrane fuel cells-higher performance', Chem. Eng. J., Vol. 102, 2004, pp. 241-247 https://doi.org/10.1016/j.cej.2004.05.004
  12. H. S. Twu, T. R. Ling, T. C. Chou and M. C. Yang, 'Ultrasonic irradiation effect in the impregnation-reduction process of preparing Pt/Nafion ${NH_4}$ sensor', Ultrason. Sonochem., Vol. 8, No. 1, 2001, pp. 41-47 https://doi.org/10.1016/S1350-4177(00)00026-2
  13. D. W. DeWulf and A. J. Bard, 'Application of Nafion/Platinum Electrodes(Solid Polymer Electrolyte Structures) to Voltarmetric Investigations of Highly Resistive Solutions', J. Electrochem. Soc., Vol. 135, No.8, 1988, pp. 1977-1985 https://doi.org/10.1149/1.2096191
  14. P. S. Fedkiw and W. H. Her, 'An Impregnation-Reduction Method to Prepare Electrodes on Nafion SPE', J. Electrochem. Soc., Vol. 136, No. 3, 1989, pp. 899-900 https://doi.org/10.1149/1.2096772
  15. R. Liu, W. H. Her and P. S. Fedkiw, 'In Situ Electrode Formation on a Nafion Membrane by Chemical Platinization', J. Electrochem. Soc., Vol. 139, No. 1, 1992, pp. 15-23 https://doi.org/10.1149/1.2069162